Patents by Inventor Patrick J. Wolfe

Patrick J. Wolfe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10037477
    Abstract: Described embodiments detect changes in a scene over time using first and second images of the scene. A non-coherent intensity change detector detects large-scale changes between the first image and the second image and generates a large-scale change value for pairs of corresponding pixel locations in the first and second images. If the large-scale change value for a given pair of pixel locations reaches a threshold, a coherent change detector is used to detect small-scale changes between the first and second images. A small-scale change value is generated for the given pairs of pixel locations in the images. A composite change value is generated by combining the large-scale change value and the small-scale change value for each pixel pair. The change thresholds are used to determine whether a change in the scene has occurred over the time period.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: July 31, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Miriam Cha, Rhonda D. Phillips, Patrick J. Wolfe, Christ D. Richmond
  • Publication number: 20170061217
    Abstract: Described embodiments detect changes in a scene over time using first and second images of the scene. A non-coherent intensity change detector detects large-scale changes between the first image and the second image and generates a large-scale change value for pairs of corresponding pixel locations in the first and second images. If the large-scale change value for a given pair of pixel locations reaches a threshold, a coherent change detector is used to detect small-scale changes between the first and second images. A small-scale change value is generated for the given pairs of pixel locations in the images. A composite change value is generated by combining the large-scale change value and the small-scale change value for each pixel pair. The change thresholds are used to determine whether a change in the scene has occurred over the time period.
    Type: Application
    Filed: June 20, 2016
    Publication date: March 2, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Miriam Cha, Rhonda D. Phillips, Patrick J. Wolfe, Christ D. Richmond
  • Patent number: 8761504
    Abstract: Presented are new alternatives to the Bayer pattern for spatial subsampling in color imaging. One aspect relates to a new design paradigm for spatio-spectral sampling The proposed scheme offers the potential to significantly reduce hardware complexity in a wide variety of applications, while at the same time improving output color image quality. In some embodiments, a framework for CFA design in presented. In one embodiment the physical characteristics of the CFA are generated so that the spectral radii of luminance and chrominance channels are maximized. The physical characteristics of CFA design are constrained to require physically realizable CFA(s). Alternatively, certain physical characteristics can be emphasized to generate easier to manufacture CFA(s).
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: June 24, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Keigo Hirakawa, Patrick J. Wolfe
  • Patent number: 7933084
    Abstract: A signal reconstruction technique is used to correct for wow and flutter in analog audio recordings. Elements of the recording are used to generate a signal for correcting the output. Involves locating modulated entities such as bias signal (e.g. frequency-modulated, amplitude-modulated, or phase-modulated entities) in the recording, extracting them, and utilizing them as a carrier to synchronize to a master clock, using the irregularity of the anomaly to indicate the speed and pitch information to be corrected. A carrier frequency is determined and applied to a digitized form of the recording. This may be performed even in the absence of a prescribed reference code or tone, such as a pilot tone laid down purposefully at the moment of recording. In the case of signals presumed to have an error in the carrier, a corresponding signal is buffered, and in the case of a presumed error, a last known signal is used for the duration of the error.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: April 26, 2011
    Inventors: James R. Howarth, Patrick J. Wolfe, Darryl Curley, Timothy Rector
  • Publication number: 20100092082
    Abstract: One aspect of the present invention relates to a new approach to the demosaicing of spatially sampled image data observed through a color filter array. In one embodiment properties of Smith-Barnwell filterbanks may be employed to exploit the correlation of color components in order to reconstruct a sub-sampled image. In other embodiments, the approach is amenable to wavelet-domain denoising prior to demosaicing. One aspect of the present invention relates to a framework for applying existing image denoising algorithms to color filter array data. In addition to yielding new algorithms for denoising and demosaicing, in some embodiments, this framework enables the application of other wavelet-based denoising algorithms directly to the CFA image data.
    Type: Application
    Filed: November 29, 2007
    Publication date: April 15, 2010
    Inventors: Keigo Hirakawa, Xiao-Li Meng, Patrick J. Wolfe
  • Publication number: 20100085452
    Abstract: One aspect of the present invention relates to a new alternative to the Bayer pattern for spatial subsampling in color imaging applications. One aspect of the present invention relates to a new design paradigm for spatio-spectral sampling, which is also described. The proposed scheme offers the potential to significantly reduce hardware complexity in a wide variety of applications, while at the same time improving output color image quality. According to another aspect, it is realized that conventional processing techniques are subject to diminishing returns, and with the exception of the most sophisticated processing techniques generate imperfections perceptible to a practiced eye. According to one aspect, a framework for CFA design in presented. In one embodiment the physical characteristics of the CFA are generated so that the spectral radii of luminance and chrominance channels are maximized. In another embodiment, the CFA designed to subject to the conditions of perfect reconstruction.
    Type: Application
    Filed: November 29, 2007
    Publication date: April 8, 2010
    Inventors: Keigo Hirakawa, Patrick J. Wolfe