Patents by Inventor Patrick J. Yagle

Patrick J. Yagle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11614106
    Abstract: In one embodiment, a method for reducing drag includes forming a smooth surface on a first portion of a physical object. The method also includes forming periodic riblets on a second portion of the physical object. The method further includes generating a flow over the periodic riblets of the second portion of the physical object and over the smooth surface of the first portion of the physical object. The second portion of the physical object is adjacent to the first portion of the physical object. Each peak of each riblet of the periodic riblets of the second portion of the physical object is located above a plane of the smooth surface of the first portion of the physical object. Each valley between adjacent riblets of the periodic riblets of the second portion of the physical object is located below the plane of the smooth surface of the first portion of the physical object. A length of each riblet of the periodic riblets runs parallel to a direction of the flow.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: March 28, 2023
    Assignee: Lockheed Martin Corporation
    Inventors: Brian R. Smith, Patrick J. Yagle, Paul Douglas McClure
  • Publication number: 20210231141
    Abstract: In one embodiment, a method for reducing drag includes forming first periodic riblets on a smooth surface of a physical object and forming second periodic riblets on the smooth surface of the physical object. The method further includes generating a flow over the first and second periodic riblets of the physical object. Each first periodic riblet comprises a first transition region at a first end of each first periodic riblet and a second transition region at a second end of each first periodic riblet. Each second periodic riblet comprises a first transition region at a first end of each second periodic riblet and a second transition region at a second end of each second periodic riblet. Each second transition region at the second end of each first periodic riblet overlaps each first transition region at the first end of each second periodic riblet. A length of each riblet of the first and second periodic riblets runs parallel to a direction of the flow.
    Type: Application
    Filed: August 21, 2019
    Publication date: July 29, 2021
    Inventors: Brian R. Smith, Patrick J. Yagle, Paul Douglas McClure
  • Publication number: 20210054859
    Abstract: In one embodiment, a method for reducing drag includes forming a smooth surface on a first portion of a physical object. The method also includes forming periodic riblets on a second portion of the physical object. The method further includes generating a flow over the periodic riblets of the second portion of the physical object and over the smooth surface of the first portion of the physical object. The second portion of the physical object is adjacent to the first portion of the physical object. Each peak of each riblet of the periodic riblets of the second portion of the physical object is located above a plane of the smooth surface of the first portion of the physical object. Each valley between adjacent riblets of the periodic riblets of the second portion of the physical object is located below the plane of the smooth surface of the first portion of the physical object. A length of each riblet of the periodic riblets runs parallel to a direction of the flow.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Brian R. Smith, Patrick J. Yagle, Paul Douglas McClure
  • Patent number: 9079658
    Abstract: A vortex generation device for reducing drag on an upswept aircraft fuselage afterbody and including a vortex generator vane that extends longitudinally from along an outer mold line of the fuselage of an aircraft adjacent an upswept afterbody of the fuselage and that is configured and positioned to reduce drag on an upswept aircraft fuselage afterbody by developing vortices that counteract vortices generated along such an upswept fuselage afterbody. The vane is disposed aft of a side paratrooper jump door of the aircraft fuselage and has a spine and leading end that are faired smoothly into the mold line of the fuselage.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 14, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Brian R. Smith, Patrick J. Yagle
  • Patent number: 8226038
    Abstract: The invention relates a method and apparatus for reducing the drag on aircraft, particularly aircraft with an upswept afterbody. The method includes the steps of positioning a plurality of drag reducing elements on the fuselage of the aircraft, wherein the drag reducing elements are positioned on the fuselage from a position at the breakline of the fuselage and extending toward the tail of the aircraft. In preferred embodiments, each of the plurality of drag reducing elements is positioned such that a first end of the drag reducing element is at an angle of between approximately 15 and 35° nose up relative to the flow of air about the fuselage at the location where the drag reducing element is positioned.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Brian R. Smith, Brant H. Maines, Edward C. Ma, Edward A. DiGirolamo, Patrick J. Yagle
  • Publication number: 20120049001
    Abstract: A vortex generation device for reducing drag on an upswept aircraft fuselage afterbody and including a vortex generator vane that extends longitudinally from along an outer mold line of the fuselage of an aircraft adjacent an upswept afterbody of the fuselage and that is configured and positioned to reduce drag on an upswept aircraft fuselage afterbody by developing vortices that counteract vortices generated along such an upswept fuselage afterbody. The vane is disposed aft of a side paratrooper jump door of the aircraft fuselage and has a spine and leading end that are faired smoothly into the mold line of the fuselage.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Inventors: Brian R. Smith, Patrick J. Yagle
  • Patent number: 8038102
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic flow field vortices within a fluid flow over a surface using micro-jet arrays. The system and method for actively manipulating and controlling the inception point, size and trajectory of flow field vortices within the fluid flow places micro-jet arrays on surfaces bounding the fluid flow. These micro-jet arrays are then actively manipulated to control the flow behavior of the ducted fluid flow, influence the inception point and trajectory of flow field vortices within the fluid flow, and reduce flow separation within the primary fluid flow.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: October 18, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Philip P. Truax, Patrick J. Yagle
  • Publication number: 20110180146
    Abstract: The invention relates a method and apparatus for reducing the drag on aircraft, particularly aircraft with an upswept afterbody. The method includes the steps of positioning a plurality of drag reducing elements on the fuselage of the aircraft, wherein the drag reducing elements are positioned on the fuselage from a position at the breakline of the fuselage and extending toward the tail of the aircraft. In preferred embodiments, each of the plurality of drag reducing elements is positioned such that a first end of the drag reducing element is at an angle of between approximately 15 and 35° nose up relative to the flow of air about the fuselage at the location where the drag reducing element is positioned.
    Type: Application
    Filed: March 18, 2009
    Publication date: July 28, 2011
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Brian R. Smith, Brant H. Maines, Edward C. Ma, Edward A. DiGirolamo, Patrick J. Yagle
  • Publication number: 20100084514
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic flow field vortices within a fluid flow over a surface using micro-jet arrays. The system and method for actively manipulating and controlling the inception point, size and trajectory of flow field vortices within the fluid flow places micro-jet arrays on surfaces bounding the fluid flow. These micro-jet arrays are then actively manipulated to control the flow behavior of the ducted fluid flow, influence the inception point and trajectory of flow field vortices within the fluid flow, and reduce flow separation within the primary fluid flow.
    Type: Application
    Filed: January 9, 2009
    Publication date: April 8, 2010
    Inventors: Daniel N. Miller, Philip P. Truax, Patrick J. Yagle
  • Patent number: 7510149
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic flow field vortices within a fluid flow over a surface using micro-jet arrays. The system and method for actively manipulating and controlling the inception point, size and trajectory of flow field vortices within the fluid flow places micro-jet arrays on surfaces bounding the fluid flow. These micro-jet arrays are then actively manipulated to control the flow behavior of the ducted fluid flow, influence the inception point and trajectory of flow field vortices within the fluid flow, and reduce flow separation within the primary fluid flow.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: March 31, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Philip P. Truax, Patrick J. Yagle
  • Patent number: 6962044
    Abstract: The present invention reveals a method and apparatus for controlling the effective area and thrust vector angle of a fluid flow. In one embodiment, the fluid flow is controlled in an advanced, high aspect ratio, complex aperture geometry nozzle using asymmetric injection into the subsonic portion of the fluid flow. The present invention vectors the primary flow by partially blocking the flow with an opposed flow across the flow field. A fluidic flow field is defined in a flow container that directs a pressurized, primary fluidic flow from the container towards an exit of the container. A nozzle may cooperate with the exit of the flow container to control the fluidic flow as it exits the flow container. One or more injectors associated with the container are proximate to the effect throat of the primary flow while other are located downstream of to introduce an opposing fluidic flow that interacts with the primary fluidic flow.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: November 8, 2005
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Patrick J. Yagle, Kerry B. Ginn, Jeffrey W. Hamstra
  • Patent number: 6682021
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic fluid flow over a surface. More specifically, the present invention provides a system and method to control aerodynamic or hydrodynamic fluid flow behavior of a ducted fluid flow using very-small-scale effectors. The system and method for actively manipulating and controlling fluid flow over a surface includes the placement of arrays of very-small-scale effectors on ducted surfaces bounding the ducted fluid flow. These very-small-scale effectors are actively manipulated to control the flow behavior of the ducted fluid flow and prevent flow separation within the primary fluid flow.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: January 27, 2004
    Assignee: Lockheed Martin Corporation
    Inventors: Philip P. Truax, Daniel N. Miller, Jeffrey W. Hamstra, Patrick J. Yagle
  • Patent number: 6371414
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic fluid flow over a surface. More specifically, the present invention provides a system and method to control aerodynamic or hydrodynamic fluid flow behavior of a ducted fluid flow using very-small-scale effectors. The system and method for actively manipulating and controlling fluid flow over a surface includes the placement of arrays of very-small-scale effectors on ducted surfaces bounding the ducted fluid flow. These very-small-scale effectors actively manipulated the boundary layer manipulated to control the flow behavior of the ducted fluid flow and suppress or prevent flow separation within the primary fluid flow.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: April 16, 2002
    Assignee: Lockheed Martin Corporation
    Inventors: Philip P. Truax, Daniel N. Miller, Jeffrey W. Hamstra, Patrick J. Yagle
  • Patent number: 6308740
    Abstract: The present invention reveals a method and apparatus for more efficiently injecting a primary fluid flow in a fluid ejector used to pump lower velocity fluid from a secondary source. In one embodiment, the primary fluid flow is a pulsed or unsteady fluid flow contained within an inner nozzle situated within a secondary flow field. This secondary fluid flow is bounded within the walls of an ejector or shroud. The secondary and primary fluid flows meet within the ejector shroud section wherein the secondary fluid flow is entrained by the primary fluid flow. The geometry of the ejector shroud section where the primary and secondary fluids mix is such as to allow the beginning of primary injector pulse to be synchronized with an acoustic wave moving upstream through the ejector initiated by the exiting of the previous pulse from the ejector shroud. The ejector's geometric properties are determined by the acoustic properties, frequency, duty cycle, and amplitude, of the pulsed primary fluid flow.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: October 30, 2001
    Assignee: Lockheed Martin Corporation
    Inventors: Brian R. Smith, Daniel N. Miller, Patrick J. Yagle, Erich E. Bender, Kerry B. Ginn