Patents by Inventor Patrick Jenny

Patrick Jenny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8798977
    Abstract: A method, system and computer program product are disclosed for simulating fluid flow in a fractured subterranean reservoir. A reservoir model representative of a fractured subterranean reservoir is provided. The reservoir model includes porous matrix control volumes and a network of fractures, which define fracture control volumes, overlying the porous matrix control volumes. A system of equations based on scale separation is constructed for fluid flow in the porous matrix control volumes and the fracture control volumes. The system of equations can include fracture equations having a pressure vector for each network of fractures that is split into an average pressure value and remainder pressure value. The system of equations based on scale separation is sequentially solved, such as by using an iterative Multi-Scale Finite Volume (MSFV) method.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: August 5, 2014
    Assignees: Chevron U.S.A. Inc., Schlumberger Technology Corporation, ETH Zurich
    Inventors: Hadi Hajibeygi, Dimitrios Karvounis, Patrick Jenny
  • Patent number: 8301429
    Abstract: Computer-implemented iterative multi-scale methods and systems are provided for handling simulation of complex, highly anisotropic, heterogeneous domains. A system and method can be configured to achieve simulation of structures where accurate localization assumptions do not exist. The iterative system and method smoothes the solution field by applying line relaxation in all spatial directions. The smoother is unconditionally stable and leads to sets of tri-diagonal linear systems that can be solved efficiently, such as by the Thomas algorithm. Furthermore, the iterative smoothing procedure, for the improvement of the localization assumptions, does not need to be applied in every time step of the computation.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: October 30, 2012
    Assignees: Chevron U.S.A. Inc., Schlumberger Technology Corporation, ETH Zurich
    Inventors: Hadi Hajibeygi, Giuseppe Bonfigli, Marc Andre Hesse, Patrick Jenny
  • Publication number: 20120158380
    Abstract: A method, system and computer program product are disclosed for simulating fluid flow in a fractured subterranean reservoir. A reservoir model representative of a fractured subterranean reservoir is provided. The reservoir model includes porous matrix control volumes and a network of fractures, which define fracture control volumes, overlying the porous matrix control volumes. A system of equations based on scale separation is constructed for fluid flow in the porous matrix control volumes and the fracture control volumes. The system of equations can include fracture equations having a pressure vector for each network of fractures that is split into an average pressure value and remainder pressure value. The system of equations based on scale separation is sequentially solved, such as by using an iterative Multi-Scale Finite Volume (MSFV) method.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicants: Chevron U.S.A. Inc., ETH Zurich, Schlumberger Technology Corporation
    Inventors: Hadi Hajibeygi, Dimitrios Karvounis, Patrick Jenny
  • Patent number: 7765091
    Abstract: A multi-scale finite-volume (MSFV) method simulates nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces. Consistent with the MSFV framework, flow and transport are treated separately and differently using a fully implicit sequential algorithm. The pressure field is solved using an operator splitting algorithm. The general solution of the pressure is decomposed into an elliptic part, a buoyancy/capillary force dominant part, and an inhomogeneous part with source/sink and accumulation. A MSFV method is used to compute the basis functions of the elliptic component, capturing long range interactions in the pressure field. Direct construction of the velocity field and solution of the transport problem on the primal coarse grid provides flexibility in accommodating physical mechanisms. A MSFV method computes an approximate pressure field, including a solution of a course-scale pressure equation; constructs fine-scale fluxes; and computes a phase-transport equation.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: July 27, 2010
    Assignees: Chevron U.S.A Inc., Schlumberger Technology Corporation, ETH Zurich
    Inventors: Seong H. Lee, Christian Wolfsteiner, Hamdi A. Tchelepi, Patrick Jenny, Ivan Fabrizio Lunati
  • Publication number: 20100094605
    Abstract: Computer-implemented iterative multi-scale methods and systems are provided for handling simulation of complex, highly anisotropic, heterogeneous domains. A system and method can be configured to achieve simulation of structures where accurate localization assumptions do not exist. The iterative system and method smoothes the solution field by applying line relaxation in all spatial directions. The smoother is unconditionally stable and leads to sets of tri-diagonal linear systems that can be solved efficiently, such as by the Thomas algorithm. Furthermore, the iterative smoothing procedure, for the improvement of the localization assumptions, does not need to be applied in every time step of the computation.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 15, 2010
    Applicants: CHEVRON U.S.A. INC., SCHLUMBERGER TECHNOLOGY CORPORATION, ETH ZURICH
    Inventors: Hadi Hajibeygi, Giuseppe Bonfigli, Marc Andre Hesse, Patrick Jenny
  • Patent number: 7546229
    Abstract: A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. Two sets of locally computed basis functions are employed. A first set of basis functions captures the small-scale heterogeneity of the underlying permeability field, and it is computed to construct the effective coarse-scale transmissibilities. A second set of basis functions is required to construct a conservative fine-scale velocity field. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: June 9, 2009
    Assignees: Chevron U.S.A. Inc., Schlumberger Technology Corporation
    Inventors: Patrick Jenny, Seong Lee, Hamdi A. Tchelepi
  • Patent number: 7505882
    Abstract: An apparatus and method are provided for solving a non-linear S-shaped function F=ƒ(S) which is representative of a property S in a physical system, such saturation in a reservoir simulation. A Newton iteration (T) is performed on the function ƒ(S) at Sv to determine a next iterative value Sv+1. It is then determined whether Sv+1 is located on the opposite side of the inflection point Sc from Sv. If Sv+1 is located on the opposite side of the inflection point from Sv, then Sv+1 is set to Sl, a modified new estimate. The modified new estimate, Sl, is preferably set to either the inflection point, Sc, or to an average value between Sv and Sv+1, i.e., Sl=0.5(Sv+Sv+1). The above steps are repeated until Sv+1 is within the predetermined convergence criteria. Also, solution algorithms are described for two-phase and three-phase flow with gravity and capillary pressure.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 17, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Patrick Jenny, Hamdi A. Tchelepi, Seong H. Lee
  • Patent number: 7496488
    Abstract: A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: February 24, 2009
    Assignees: Schlumberger Technology Company, Chevron U.S.A. Inc., ETH Zurich
    Inventors: Patrick Jenny, Seong Lee, Hamdi A. Tchelepi
  • Publication number: 20080208539
    Abstract: A multi-scale finite-volume (MSFV) method simulates nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces. Consistent with the MSFV framework, flow and transport are treated separately and differently using a fully implicit sequential algorithm. The pressure field is solved using an operator splitting algorithm. The general solution of the pressure is decomposed into an elliptic part, a buoyancy/capillary force dominant part, and an inhomogeneous part with source/sink and accumulation. A MSFV method is used to compute the basis functions of the elliptic component, capturing long range interactions in the pressure field. Direct construction of the velocity field and solution of the transport problem on the primal coarse grid provides flexibility in accommodating physical mechanisms. A MSFV method computes an approximate pressure field, including a solution of a course-scale pressure equation; constructs fine-scale fluxes; and computes a phase-transport equation.
    Type: Application
    Filed: June 14, 2007
    Publication date: August 28, 2008
    Applicant: Chevron U.S.A. Inc.
    Inventors: Seong H. Lee, Christian Wolfsteiner, Hamdi A. Tchelepi, Patrick Jenny, Ivan Fabrizio Lunati
  • Publication number: 20070226294
    Abstract: A method and system for accessing network services. A client sends a request for a service. The request includes an address of the client. One or more resolvers receive the request for a service. The one or more resolvers determine at least one service location to return to the client based at least partially on the service requested and the address of the client. The at least one service location is then returned to the client. The service locations returned to the client may also be based on a policy, user preferences, client preferences, or client characteristics.
    Type: Application
    Filed: May 24, 2007
    Publication date: September 27, 2007
    Inventors: Joseph Pruitt, Bryan Skene, Patrick Jenny, Gary Mager
  • Publication number: 20060265203
    Abstract: An apparatus and method are provided for solving a non-linear S-shaped function F=f(S) which is representative of a property S in a physical system, such saturation in a reservoir simulation. A Newton iteration (T) is performed on the function f(S) at Sv to determine a next iterative value Sv+1. It is then determined whether Sv+1 is located on the opposite side of the inflection point Sc from Sv. If Sv+1 is located on the opposite side of the inflection point from Sv, then Sv+1 is set to Sl, a modified new estimate. The modified new estimate, Sl, is preferably set to either the inflection point, Sc, or to an average value between Sv and Sv+1, i.e., Sl=0.5(Sv+Sv+1). The above steps are repeated until Sv+1 is within the predetermined convergence criteria. Also, solution algorithms are described for two-phase and three-phase flow with gravity and capillary pressure.
    Type: Application
    Filed: March 15, 2006
    Publication date: November 23, 2006
    Inventors: Patrick Jenny, Hamdi Tchelepi, Seong Lee
  • Publication number: 20050203725
    Abstract: A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally.
    Type: Application
    Filed: November 23, 2004
    Publication date: September 15, 2005
    Inventors: Patrick Jenny, Seong Lee, Hamdi Tchelepi
  • Publication number: 20050177354
    Abstract: A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. Two sets of locally computed basis functions are employed. A first set of basis functions captures the small-scale heterogeneity of the underlying permeability field, and it is computed to construct the effective coarse-scale transmissibilities. A second set of basis functions is required to construct a conservative fine-scale velocity field. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally.
    Type: Application
    Filed: November 22, 2004
    Publication date: August 11, 2005
    Inventors: Patrick Jenny, Seong Lee, Hamdi Tchelepi
  • Patent number: 6823297
    Abstract: A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. Two sets of locally computed basis functions are employed. A first set of basis functions captures the small-scale heterogeneity of the underlying permeability field, and it is computed to construct the effective coarse-scale transmissibilities. A second set of basis functions is required to construct a conservative fine-scale velocity field. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 23, 2004
    Assignees: Chevron U.S.A. Inc., Schlumberger Technology Corporation
    Inventors: Patrick Jenny, Seong Lee, Hamdi A. Tchelepi
  • Publication number: 20040176937
    Abstract: A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. Two sets of locally computed basis functions are employed. A first set of basis functions captures the small-scale heterogeneity of the underlying permeability field, and it is computed to construct the effective coarse-scale transmissibilities. A second set of basis functions is required to construct a conservative fine-scale velocity field. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally.
    Type: Application
    Filed: March 6, 2003
    Publication date: September 9, 2004
    Inventors: Patrick Jenny, Seong Lee, Hamdi A. Tchelepi