Patents by Inventor Patrick Joseph Cimo

Patrick Joseph Cimo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10824200
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: November 3, 2020
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20200031703
    Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Paul D. Albee, Antoine Gaston Denis Bisson, Olus Naili Boratav, Patrick Joseph Cimo, Glen Bennett Cook, Frank Coppola, Michael Thomas Gallagher, Laurent Joubaud, Irene Mona Peterson, Richard Curwood Peterson, George Clinton Shay, Nicholas Ryan Wheeler
  • Patent number: 10472269
    Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 12, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Michael Thomas Gallagher, Patrick Joseph Cimo, Nicholas Ryan Wheeler, Frank Coppola, Irene Mona Peterson, Richard Curwood Peterson, Olus Naili Boratav, George Clinton Shay, Paul D Albee, Laurent Joubaud, Antoine Gaston Denis Bisson, Glen Bennett Cook
  • Publication number: 20190050027
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20180327296
    Abstract: A method includes heating a glass preform having a plurality of glass layers and drawing the glass preform in a distal direction to form a drawn glass sheet extending distally from the glass preform and having the plurality of glass layers. The drawn glass sheet is thinner than the glass preform. The drawn glass sheet can be rolled onto a collection spool. At least a portion of a glass layer can be removed from the drawn glass sheet. An exemplary glass sheet includes a first glass layer, a second glass layer adjacent to the first glass layer, and a thickness of at most about 0.1 mm. An exemplary ion exchanged glass sheet includes a thickness of at most about 0.1 mm and a surface layer that is under a compressive stress and extends into an interior of the glass sheet to a depth of layer.
    Type: Application
    Filed: November 20, 2015
    Publication date: November 15, 2018
    Inventors: Patrick Joseph Cimo, Adam James Ellison, Michael Thomas Gallagher, Dennis James Post, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20180113490
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: December 15, 2017
    Publication date: April 26, 2018
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20180050949
    Abstract: An apparatus for making a profiled tubing includes a mandrel adapted for positioning proximate a tubing. The mandrel has a nozzle section with a select cross-sectional profile that will define a final cross-sectional profile of the tubing. The nozzle section has a feed chamber for receiving a gas and a porous circumferential surface through which the gas can be discharged to an exterior of the mandrel. The gas when discharged to the exterior of the mandrel forms a film of pressurized gas between the porous circumferential surface and the tubing. A method of forming a profiled tubing using the apparatus is disclosed. A sleeve formed from the profiled tubing is also disclosed.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 22, 2018
    Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Ronan Tanguy
  • Patent number: 9898046
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: February 20, 2018
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 9834467
    Abstract: An apparatus (100) for making glass tubing (200) of a desired non-circular cross-sectional profile (cf FIG. 3) includes a mandrel (101) adapted for positioning proximate heat-softened tubing. The mandrel (101) has a nose (102) and a nozzle section (120) with a chosen profile that will define a final cross-sectional profile of the tubing. The nozzle section (120) has a feed chamber (140) for receiving a gas from a source (207) and a porous and/or foraminous circumferential surface (132,134) through which the gas can be discharged to an exterior of the mandrel. The gas discharges to the exterior of the mandrel, forming a film of pressurized gas in the gap (314, 318) between the porous circumferential surface (132,134) and the heat-softened tubing (200). A method of forming tubing having a non-circular cross-sectional profile using the apparatus is also provided.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: December 5, 2017
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Ronan Tanguy
  • Publication number: 20170283296
    Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
    Type: Application
    Filed: September 3, 2015
    Publication date: October 5, 2017
    Inventors: Michael Thomas Gallagher, Patrick Joseph Cimo, Nicholas Ryan Wheeler, Frank Coppola, Irene Mona Peterson, Richard Curwood Peterson, Olus Naili Boratav, George Clinton Shay, Paul D. Albee, Laurent Joubaud, Antoine Gaston Bisson, Glen Bennett Cook
  • Publication number: 20170266925
    Abstract: Shaped glass structures, in particular to curved glass structures, having optically improved transmittance are provided along with methods of making such glass structures. Articles and methods described herein mask tube or reforming defects with help of refractive index-matching substances (e.g. optically clear adhesives) and/or additional glass layers. The articles and methods are applicable to any shaped glass, and is particularly useful for 3D-shaped parts for use in portable electronic devices.
    Type: Application
    Filed: May 11, 2015
    Publication date: September 21, 2017
    Applicant: Corning Incorporated
    Inventors: Jaymin Amin, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, Santona Pal
  • Publication number: 20170115700
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 9557773
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: January 31, 2017
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20160224069
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: March 16, 2016
    Publication date: August 4, 2016
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20160023448
    Abstract: Methods and apparatus provide for: sourcing an ultra-thin glass sheet having first and second opposing major surfaces and perimeter edges therebetween, the glass sheet having a thickness between the first and second surfaces of less than about 400 microns; adhering at least one polymer layer directly or indirectly to at least one of the first and second surfaces of the glass sheet to form a laminated structure; and cutting the laminated structure using at least one of the following techniques: shear cutting, burst cutting, slit cutting, and crush cutting.
    Type: Application
    Filed: March 10, 2014
    Publication date: January 28, 2016
    Inventors: Dana Craig Bookbinder, Patrick Joseph Cimo, Karthik Gopalakrishnan, Timothy Michael Gross, Glafiro Guerrero-Medina, Kiat Chyai Kang, Sue Camille Lewis
  • Publication number: 20150232365
    Abstract: A glass tube making apparatus comprises a forming device with a shaping member positioned within a downstream portion of an outer tube. In further examples, methods of making a glass tube include the steps of passing a quantity molten glass through an upstream portion of the outer tube, wherein the molten glass includes a first cross-sectional shape. The method further includes the step of passing the quantity of molten glass through a downstream portion of the outer tube, wherein the first cross-sectional shape is transitioned to a second cross-sectional shape. In still further examples, methods of making a glass tube include the step of modifying a cross-sectional shape of the glass tube with an air bearing.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 20, 2015
    Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Allan Mark Fredholm
  • Publication number: 20150225279
    Abstract: An apparatus (100) for making glass tubing (200) of a desired non-circular cross-sectional profile (cf FIG. 3) includes a mandrel (101) adapted for positioning proximate heat-softened tubing. The mandrel (101) has a nose (102) and a nozzle section (120) with a chosen profile that will define a final cross-sectional profile of the tubing. The nozzle section (120) has a feed chamber (140) for receiving a gas from a source (207) and a porous and/or foraminous circumferential surface (132,134) through which the gas can be discharged to an exterior of the mandrel. The gas discharges to the exterior of the mandrel, forming a film of pressurized gas in the gap (314, 318) between the porous circumferential surface (132,134) and the heat-softened tubing (200). A method of forming tubing having a non-circular cross-sectional profile using the apparatus is also provided.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 13, 2015
    Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Ronan Tanguy
  • Publication number: 20150210589
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 30, 2015
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20150210590
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is held at a bend radius from about 1 mm to about 20 mm for at least 60 minutes at about 25° C. and about 50% relative humidity. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 30, 2015
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20150210588
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, with the center of curvature on the side of the second primary surface so as to induce a bending stress ?B at the first primary surface, ?I+?B<0. Still further, the glass element has a puncture resistance of ?1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 21, 2015
    Publication date: July 30, 2015
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Michael Patrick Donovan, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Gautam Narendra Kudva, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman