Patents by Inventor Patrick Joseph Cimo
Patrick Joseph Cimo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11097514Abstract: Shaped glass structures, in particular to curved glass structures, having optically improved transmittance are provided along with methods of making such glass structures. Articles and methods described herein mask tube or reforming defects with help of refractive index-matching substances (e.g. optically clear adhesives) and/or additional glass layers. The articles and methods are applicable to any shaped glass, and is particularly useful for 3D-shaped parts for use in portable electronic devices.Type: GrantFiled: May 11, 2015Date of Patent: August 24, 2021Assignee: CORNING INCORPORATEDInventors: Jaymin Amin, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, Santona Pal
-
Patent number: 11078102Abstract: A method includes heating a glass preform having a plurality of glass layers and drawing the glass preform in a distal direction to form a drawn glass sheet extending distally from the glass preform and having the plurality of glass layers. The drawn glass sheet is thinner than the glass preform. The drawn glass sheet can be rolled onto a collection spool. At least a portion of a glass layer can be removed from the drawn glass sheet. An exemplary glass sheet includes a first glass layer, a second glass layer adjacent to the first glass layer, and a thickness of at most about 0.1 mm. An exemplary ion exchanged glass sheet includes a thickness of at most about 0.1 mm and a surface layer that is under a compressive stress and extends into an interior of the glass sheet to a depth of layer.Type: GrantFiled: November 20, 2015Date of Patent: August 3, 2021Assignee: CORNING INCORPORATEDInventors: Patrick Joseph Cimo, Adam James Ellison, Michael Thomas Gallagher, Dennis James Post, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20210034112Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: ApplicationFiled: October 5, 2020Publication date: February 4, 2021Inventors: THERESA CHANG, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Patent number: 10824200Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: GrantFiled: October 17, 2018Date of Patent: November 3, 2020Assignee: Corning IncorporatedInventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20200031703Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.Type: ApplicationFiled: October 3, 2019Publication date: January 30, 2020Inventors: Paul D. Albee, Antoine Gaston Denis Bisson, Olus Naili Boratav, Patrick Joseph Cimo, Glen Bennett Cook, Frank Coppola, Michael Thomas Gallagher, Laurent Joubaud, Irene Mona Peterson, Richard Curwood Peterson, George Clinton Shay, Nicholas Ryan Wheeler
-
Patent number: 10472269Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.Type: GrantFiled: September 3, 2015Date of Patent: November 12, 2019Assignee: CORNING INCORPORATEDInventors: Michael Thomas Gallagher, Patrick Joseph Cimo, Nicholas Ryan Wheeler, Frank Coppola, Irene Mona Peterson, Richard Curwood Peterson, Olus Naili Boratav, George Clinton Shay, Paul D Albee, Laurent Joubaud, Antoine Gaston Denis Bisson, Glen Bennett Cook
-
Publication number: 20190050027Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: ApplicationFiled: October 17, 2018Publication date: February 14, 2019Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20180327296Abstract: A method includes heating a glass preform having a plurality of glass layers and drawing the glass preform in a distal direction to form a drawn glass sheet extending distally from the glass preform and having the plurality of glass layers. The drawn glass sheet is thinner than the glass preform. The drawn glass sheet can be rolled onto a collection spool. At least a portion of a glass layer can be removed from the drawn glass sheet. An exemplary glass sheet includes a first glass layer, a second glass layer adjacent to the first glass layer, and a thickness of at most about 0.1 mm. An exemplary ion exchanged glass sheet includes a thickness of at most about 0.1 mm and a surface layer that is under a compressive stress and extends into an interior of the glass sheet to a depth of layer.Type: ApplicationFiled: November 20, 2015Publication date: November 15, 2018Inventors: Patrick Joseph Cimo, Adam James Ellison, Michael Thomas Gallagher, Dennis James Post, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20180113490Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: ApplicationFiled: December 15, 2017Publication date: April 26, 2018Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20180050949Abstract: An apparatus for making a profiled tubing includes a mandrel adapted for positioning proximate a tubing. The mandrel has a nozzle section with a select cross-sectional profile that will define a final cross-sectional profile of the tubing. The nozzle section has a feed chamber for receiving a gas and a porous circumferential surface through which the gas can be discharged to an exterior of the mandrel. The gas when discharged to the exterior of the mandrel forms a film of pressurized gas between the porous circumferential surface and the tubing. A method of forming a profiled tubing using the apparatus is disclosed. A sleeve formed from the profiled tubing is also disclosed.Type: ApplicationFiled: October 31, 2017Publication date: February 22, 2018Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Ronan Tanguy
-
Patent number: 9898046Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: GrantFiled: January 4, 2017Date of Patent: February 20, 2018Assignee: Corning IncorporatedInventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Patent number: 9834467Abstract: An apparatus (100) for making glass tubing (200) of a desired non-circular cross-sectional profile (cf FIG. 3) includes a mandrel (101) adapted for positioning proximate heat-softened tubing. The mandrel (101) has a nose (102) and a nozzle section (120) with a chosen profile that will define a final cross-sectional profile of the tubing. The nozzle section (120) has a feed chamber (140) for receiving a gas from a source (207) and a porous and/or foraminous circumferential surface (132,134) through which the gas can be discharged to an exterior of the mandrel. The gas discharges to the exterior of the mandrel, forming a film of pressurized gas in the gap (314, 318) between the porous circumferential surface (132,134) and the heat-softened tubing (200). A method of forming tubing having a non-circular cross-sectional profile using the apparatus is also provided.Type: GrantFiled: August 29, 2013Date of Patent: December 5, 2017Assignee: Corning IncorporatedInventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Ronan Tanguy
-
Publication number: 20170283296Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.Type: ApplicationFiled: September 3, 2015Publication date: October 5, 2017Inventors: Michael Thomas Gallagher, Patrick Joseph Cimo, Nicholas Ryan Wheeler, Frank Coppola, Irene Mona Peterson, Richard Curwood Peterson, Olus Naili Boratav, George Clinton Shay, Paul D. Albee, Laurent Joubaud, Antoine Gaston Bisson, Glen Bennett Cook
-
Publication number: 20170266925Abstract: Shaped glass structures, in particular to curved glass structures, having optically improved transmittance are provided along with methods of making such glass structures. Articles and methods described herein mask tube or reforming defects with help of refractive index-matching substances (e.g. optically clear adhesives) and/or additional glass layers. The articles and methods are applicable to any shaped glass, and is particularly useful for 3D-shaped parts for use in portable electronic devices.Type: ApplicationFiled: May 11, 2015Publication date: September 21, 2017Applicant: Corning IncorporatedInventors: Jaymin Amin, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, Santona Pal
-
Publication number: 20170115700Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: ApplicationFiled: January 4, 2017Publication date: April 27, 2017Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Patent number: 9557773Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: GrantFiled: March 16, 2016Date of Patent: January 31, 2017Assignee: Corning IncorporatedInventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20160224069Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.Type: ApplicationFiled: March 16, 2016Publication date: August 4, 2016Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
-
Publication number: 20160023448Abstract: Methods and apparatus provide for: sourcing an ultra-thin glass sheet having first and second opposing major surfaces and perimeter edges therebetween, the glass sheet having a thickness between the first and second surfaces of less than about 400 microns; adhering at least one polymer layer directly or indirectly to at least one of the first and second surfaces of the glass sheet to form a laminated structure; and cutting the laminated structure using at least one of the following techniques: shear cutting, burst cutting, slit cutting, and crush cutting.Type: ApplicationFiled: March 10, 2014Publication date: January 28, 2016Inventors: Dana Craig Bookbinder, Patrick Joseph Cimo, Karthik Gopalakrishnan, Timothy Michael Gross, Glafiro Guerrero-Medina, Kiat Chyai Kang, Sue Camille Lewis
-
Publication number: 20150232365Abstract: A glass tube making apparatus comprises a forming device with a shaping member positioned within a downstream portion of an outer tube. In further examples, methods of making a glass tube include the steps of passing a quantity molten glass through an upstream portion of the outer tube, wherein the molten glass includes a first cross-sectional shape. The method further includes the step of passing the quantity of molten glass through a downstream portion of the outer tube, wherein the first cross-sectional shape is transitioned to a second cross-sectional shape. In still further examples, methods of making a glass tube include the step of modifying a cross-sectional shape of the glass tube with an air bearing.Type: ApplicationFiled: August 29, 2013Publication date: August 20, 2015Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Allan Mark Fredholm
-
Publication number: 20150225279Abstract: An apparatus (100) for making glass tubing (200) of a desired non-circular cross-sectional profile (cf FIG. 3) includes a mandrel (101) adapted for positioning proximate heat-softened tubing. The mandrel (101) has a nose (102) and a nozzle section (120) with a chosen profile that will define a final cross-sectional profile of the tubing. The nozzle section (120) has a feed chamber (140) for receiving a gas from a source (207) and a porous and/or foraminous circumferential surface (132,134) through which the gas can be discharged to an exterior of the mandrel. The gas discharges to the exterior of the mandrel, forming a film of pressurized gas in the gap (314, 318) between the porous circumferential surface (132,134) and the heat-softened tubing (200). A method of forming tubing having a non-circular cross-sectional profile using the apparatus is also provided.Type: ApplicationFiled: August 29, 2013Publication date: August 13, 2015Inventors: Antoine Gaston Denis Bisson, Patrick Joseph Cimo, Thierry Luc Alain Dannoux, Ronan Tanguy