Patents by Inventor Patrick Jun Howe

Patrick Jun Howe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11850842
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 26, 2023
    Assignee: XEROX CORPORATION
    Inventors: Patrick Jun Howe, John Patrick Baker, Brian M. Balthasar, Glenn Batchelor, Anthony Salvatore Condello, Ali R. Dergham, Timothy P. Foley, Douglas K. Herrmann, Richard A. Kalb, Peter John Knausdorf, Jason M. LeFevre, Jack T. Lestrange, Chu-Heng Liu, Paul J. McConville, Seemit Praharaj, Palghat S. Ramesh, Joseph C. Sheflin, Emmett James Spence, Robert Jian Zhang, Megan Zielenski
  • Patent number: 11697296
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: July 11, 2023
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Linn C. Hoover, Patrick Jun Howe, Joseph C. Sheflin, Robert Jian Zhang, John Patrick Baker, Brian M. Balthasar, Glenn Batchelor, Anthony Salvatore Condello, Ali R. Dergham, Timothy P. Foley, Richard A. Kalb, Peter John Knausdorf, Jason M. LeFevre, Jack T. Lestrange, Chu-Heng Liu, Paul J. McConville, Seemit Praharaj, Palghat S. Ramesh, Erwin Ruiz, Emmett James Spence, Rachel Lynn Tanchak, Kareem Tawil, Carlos M. Terrero, Megan Zielenski
  • Publication number: 20220305819
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Patrick Jun HOWE, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Douglas K. HERRMANN, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Joseph C. SHEFLIN, Emmett James SPENCE, Robert Jian ZHANG, Megan ZIELENSKI
  • Publication number: 20220305815
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Douglas K. HERRMANN, Linn C. HOOVER, Patrick Jun HOWE, Joseph C. SHEFLIN, Robert Jian ZHANG, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Erwin RUIZ, Emmett James SPENCE, Rachel Lynn TANCHAK, Kareem TAWIL, Carlos M. TERRERO, Megan ZIELENSKI
  • Patent number: 11249240
    Abstract: A display device component includes an optical waveguide having a surface; a first material formed on a portion of the surface of the optical waveguide; and a second material formed on a portion of the first material. The first material has light scattering properties.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: February 15, 2022
    Assignee: Xerox Corporation
    Inventors: Chu-Heng Liu, Patrick Jun Howe, David C. Craig
  • Patent number: 11192299
    Abstract: A method for curing a three dimensional (3D) printed part is disclosed. For example, the method includes adding a layer of a build material, curing the layer of the build material using a first light source having a first wavelength, repeating the adding and the curing using the light source having the first wavelength for a predefined number of layers, adding a final top layer of the build material to form the 3D printed part and curing the final top layer of the build material using a second light source having a second wavelength that is different than the first wavelength.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: December 7, 2021
    Assignee: Xerox Corporation
    Inventors: Seemit Praharaj, Mandakini Kanungo, Paul McConville, Patrick Jun Howe
  • Publication number: 20180372629
    Abstract: A display device component includes an optical waveguide having a surface; a first material formed on a portion of the surface of the optical waveguide; and a second material formed on a portion of the first material. The first material has light scattering properties.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 27, 2018
    Applicant: Xerox Corporation
    Inventors: Chu-Heng Liu, Patrick Jun Howe, David C. Craig
  • Publication number: 20180304548
    Abstract: A method for curing a three dimensional (3D) printed part is disclosed. For example, the method includes adding a layer of a build material, curing the layer of the build material using a first light source having a first wavelength, repeating the adding and the curing using the light source having the first wavelength for a predefined number of layers, adding a final top layer of the build material to form the 3D printed part and curing the final top layer of the build material using a second light source having a second wavelength that is different than the first wavelength.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 25, 2018
    Inventors: Seemit Praharaj, Mandakini Kanungo, Paul McConville, Patrick Jun Howe
  • Patent number: 9032874
    Abstract: A system and corresponding methods are disclosed for depositing of a layer of dampening fluid to a reimageable surface of an imaging member in a variable data lithography system by way of condensation. Dampening fluid in an airborne state is introduced proximate the reimageable surface in a condensation region. Conditions in the condensation region are such that the airborne dampening fluid preferentially condenses on the reimageable surface in a precisely controlled quantity, to thereby form a precisely controlled layer of dampening fluid of desired thickness over the reimageable surface. Among other advantages, improved print quality is obtained.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 19, 2015
    Assignee: Xerox Corporation
    Inventors: Chu-heng Liu, Patrick Jun Howe
  • Publication number: 20130247788
    Abstract: A system and corresponding methods are disclosed for depositing of a layer of dampening fluid to a reimageable surface of an imaging member in a variable data lithography system by way of condensation. Dampening fluid in an airborne state is introduced proximate the reimageable surface in a condensation region. Conditions in the condensation region are such that the airborne dampening fluid preferentially condenses on the reimageable surface in a precisely controlled quantity, to thereby form a precisely controlled layer of dampening fluid of desired thickness over the reimageable surface. Among other advantages, improved print quality is obtained.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 26, 2013
    Applicant: XEROX CORPORATION
    Inventors: Chu-heng Liu, Patrick Jun Howe