Patents by Inventor Patrick KAHN

Patrick KAHN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11877756
    Abstract: A system for decorticating at least one bone surface includes an elongated soft tissue protector, an elongated drive shaft and a cutter. The elongated soft tissue protector has a bore extending therethrough. The bore has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The cutter may be located on or near a distal end of the drive shaft. The cutter has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The maximum lateral extent of the cutter is greater than the minimum lateral extent of the bore but is no greater than the maximum lateral extent of the bore. The bore of the soft tissue protector is configured to slidably receive the cutter therethrough. Other systems and methods for decorticating at least one bone surface are also provided.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: January 23, 2024
    Assignee: SI-Bone Inc.
    Inventors: Paul Sand, Bret Schneider, Patrick Kahn, Scott A. Yerby, Gerard Librodo, Khalid Sethi, Craig Meyer, Michael Didinsky, Thomas A. McNally, Robert McLain, Nikolas Kerr, Eric Swick, Yale Van Dyne, Jen Kasler
  • Publication number: 20230270559
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAT”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Patent number: 11678997
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: June 20, 2023
    Assignee: SI-Bone Inc.
    Inventors: Ali H. Mesiwala, Mark A. Reiley, Paul M. Sand, Bret W. Schneider, Scott A. Yerby, Christopher I. Shaffrey, Robert K. Eastlack, Juan S. Uribe, Isador H. Lieberman, Frank M. Phillips, David W. Polly, Phillip J. Singer, Jeffrey B. Phelps, Derek P. Lindsey, Patrick Kahn, Nikolas F. Kerr, Francois Follini
  • Publication number: 20220354665
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: January 28, 2022
    Publication date: November 10, 2022
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Publication number: 20220287848
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: January 28, 2022
    Publication date: September 15, 2022
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Patent number: 11369419
    Abstract: The present invention generally relates to bone implants. More specifically, the present invention relates to bone implants used for the fixation and or fusion of the sacroiliac joint and/or the spine. For example, a system for fusing and or stabilizing a plurality of bones is provided. The system includes an implant structure having a shank portion, a body portion and a head portion. The body portion is coupled to the shank portion and is configured to be placed through a first bone segment, across a bone joint or fracture and into a second bone segment. The body portion is configured to allow for bony on-growth, ingrowth and through-growth. The head portion is coupled to the proximal end of the shank portion and is configured to couple the shank portion to a stabilizing rod. Methods of use are also disclosed.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: June 28, 2022
    Assignee: SI-Bone Inc.
    Inventors: Ali H. Mesiwala, Frank M. Phillips, David W. Polly, Phillip J. Singer, Jeffrey B. Phelps, Derek P. Lindsey, Patrick Kahn, Nikolas F. Kerr, Mark A. Reiley, Paul M. Sand, Bret W. Schneider, Scott A. Yerby, Christopher I. Shaffrey, Robert K. Eastlack, Juan S. Uribe, Isador H. Lieberman
  • Publication number: 20220096098
    Abstract: A system for decorticating at least one bone surface includes an elongated soft tissue protector, an elongated drive shaft and a cutter. The elongated soft tissue protector has a bore extending therethrough. The bore has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The cutter may be located on or near a distal end of the drive shaft. The cutter has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The maximum lateral extent of the cutter is greater than the minimum lateral extent of the bore but is no greater than the maximum lateral extent of the bore. The bore of the soft tissue protector is configured to slidably receive the cutter therethrough. Other systems and methods for decorticating at least one bone surface are also provided.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 31, 2022
    Inventors: Paul SAND, Bret SCHNEIDER, Patrick KAHN, Scott A. YERBY, Gerard LIBRODO, Khalid SETHI, Craig MEYER, Michael DIDINSKY, Thomas A. MCNALLY, Robert MCLAIN, Nikolas KERR, Eric SWICK, Yale VAN DYNE, Jen KASLER
  • Patent number: 11234830
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: February 1, 2022
    Assignee: SI-Bone Inc.
    Inventors: Ali H. Mesiwala, Mark A. Reiley, Paul M. Sand, Bret W. Schneider, Scott A. Yerby, Christopher I. Shaffrey, Robert K. Eastlack, Juan S. Uribe, Isador H. Lieberman, Frank M. Phillips, David W. Polly, Phillip J. Singer, Jeffrey B. Phelps, Derek P. Lindsey, Patrick Kahn, Nikolas F. Kerr, Francois Follini
  • Patent number: 11116519
    Abstract: A system for decorticating at least one bone surface includes an elongated soft tissue protector, an elongated drive shaft and a cutter. The elongated soft tissue protector has a bore extending therethrough. The bore has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The cutter may be located on or near a distal end of the drive shaft. The cutter has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The maximum lateral extent of the cutter is greater than the minimum lateral extent of the bore but is no greater than the maximum lateral extent of the bore. The bore of the soft tissue protector is configured to slidably receive the cutter therethrough. Other systems and methods for decorticating at least one bone surface are also provided.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: September 14, 2021
    Assignee: SI-Bone Inc.
    Inventors: Paul Sand, Bret Schneider, Patrick Kahn, Scott A. Yerby, Gerard Librodo, Khalid Sethi, Craig Meyer, Michael Didinsky, Thomas A. McNally, Robert McLain, Nikolas Kerr, Eric Swick, Yale Van Dyne, Jen Kasler
  • Publication number: 20200268525
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Publication number: 20200261240
    Abstract: The present invention generally relates to bone implants. More specifically, the present invention relates to bone implants used for the fixation and or fusion of the sacroiliac joint and/or the spine. For example, a system for fusing and or stabilizing a plurality of bones is provided. The system includes an implant structure having a shank portion, a body portion and a head portion. The body portion is coupled to the shank portion and is configured to be placed through a first bone segment, across a bone joint or fracture and into a second bone segment. The body portion is configured to allow for bony on-growth, ingrowth and through-growth. The head portion is coupled to the proximal end of the shank portion and is configured to couple the shank portion to a stabilizing rod. Methods of use are also disclosed.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 20, 2020
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR
  • Publication number: 20190090888
    Abstract: A system for decorticating at least one bone surface includes an elongated soft tissue protector, an elongated drive shaft and a cutter. The elongated soft tissue protector has a bore extending therethrough. The bore has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The cutter may be located on or near a distal end of the drive shaft. The cutter has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The maximum lateral extent of the cutter is greater than the minimum lateral extent of the bore but is no greater than the maximum lateral extent of the bore. The bore of the soft tissue protector is configured to slidably receive the cutter therethrough. Other systems and methods for decorticating at least one bone surface are also provided.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 28, 2019
    Applicant: SI-Bone Inc.
    Inventors: Paul SAND, M. Bret SCHNEIDER, Patrick KAHN, Scott A. YERBY, Gerard LIBRODO, Khalid SETHI, Craig MEYER, Michael DIDINSKY, Thomas A. MCNALLY, Robert MCLAIN, Nikolas KERR, Eric SWICK, Yale VAN DYNE, Jen KASLER