Patents by Inventor Patrick Keys

Patrick Keys has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230095007
    Abstract: Integrated circuit structures having metal-containing source or drain structures, and methods of fabricating integrated circuit structures having metal-containing source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. The first and second epitaxial source or drain structures include a metal species diffused therein, the metal species further diffused partially into the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Rishabh MEHANDRU, Stephen M. CEA, Aaron D. LILAK, Cory WEBER, Patrick KEYS, Navid PAYDAVOSI
  • Publication number: 20230097948
    Abstract: Integrated circuitry comprising transistor structures having a channel portion over a base portion of fin. The base portion of the fin is an insulative amorphous oxide, or a counter-doped crystalline material. Transistor structures, such as channel portions of a fin and source and drain materials may be first formed with epitaxial processes seeded by a front side of a crystalline substrate. Following front side processing, a backside of the transistor structures may be exposed and the base portion of the fin modified from the crystalline substrate composition into the amorphous oxide or counter-doped crystalline material using backside processes and low temperatures that avoid degradation to the channel material while reducing transistor off-state leakage.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Rishabh Mehandru, Stephen Cea, Patrick Keys, Aaron Lilak, Cory Weber
  • Publication number: 20230088753
    Abstract: Gate-all-around integrated circuit structures having a doped subfin, and methods of fabricating gate-all-around integrated circuit structures having a doped subfin, are described. For example, an integrated circuit structure includes a subfin structure having well dopants. A vertical arrangement of horizontal semiconductor nanowires is over the subfin structure. A gate stack is surrounding a channel region of the vertical arrangement of horizontal semiconductor nanowires, the gate stack overlying the subfin structure. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Stephen M. Cea, Aaron D. Lilak, Patrick Keys, Cory Weber, Rishabh Mehandru, Anand S. Murthy, Biswajeet Guha, Mohammad Hasan, William Hsu, Tahir Ghani, Chang Wan Han, Kihoon Park, Sabih Omar
  • Publication number: 20220415708
    Abstract: Integrated circuitry comprising transistor structures with a source/drain etch stop layer to limit the depth of source and drain material relative to a channel of the transistor. A portion of a channel material layer may be etched in preparation for source and drain materials. The etch may be stopped at an etch stop layer buried between a channel material layer and an underlying planar substrate layer. The etch stop layer may have a different composition than the channel layer while retaining crystallinity of the channel layer. The source and drain etch stop layer may provide adequate etch selectivity to ensure a source and drain etch process does not punch through the etch stop layer. Following the etch process, source and drain materials may be formed, for example with an epitaxial growth process. The source and drain etch stop layer may be, for example, primarily silicon and carbon.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Rishabh Mehandru, Stephen Cea, Tahir Ghani, Patrick Keys, Aaron Lilak, Anand Murthy, Cory Weber
  • Publication number: 20220416024
    Abstract: Gate-all-around integrated circuit structures having underlying dopant-diffusion blocking layers are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin. The fin includes a dopant diffusion blocking layer on a first semiconductor layer, and a second semiconductor layer on the dopant diffusion blocking layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 6, 2022
    Publication date: December 29, 2022
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Dax CRUM, Patrick KEYS, Tahir GHANI, Susmita GHOSE, Ted COOK, JR.
  • Patent number: 11527613
    Abstract: An apparatus is provided which comprises: a plurality of nanowire transistors stacked vertically, wherein each nanowire transistor of the plurality of nanowire transistors comprises a corresponding nanowire of a plurality of nanowires; and a gate stack, wherein the gate stack fully encircles at least a section of each nanowire of the plurality of nanowires.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: December 13, 2022
    Assignee: INTEL CORPORATION
    Inventors: Aaron Lilak, Patrick Keys, Sean Ma, Stephen Cea, Rishabh Mehandru
  • Patent number: 11495683
    Abstract: Multiple strain states in epitaxial transistor channel material may be achieved through the incorporation of stress-relief defects within a seed material. Selective application of strain may improve channel mobility of one carrier type without hindering channel mobility of the other carrier type. A transistor structure may have a heteroepitaxial fin including a first layer of crystalline material directly on a second layer of crystalline material. Within the second layer, a number of defected regions of a threshold minimum dimension are present, which induces the first layer of crystalline material to relax into a lower-strain state. The defected regions may be introduced selectively, for example a through a masked impurity implantation, so that the defected regions may be absent in some transistor structures where a higher-strain state in the first layer of crystalline material is desired.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: November 8, 2022
    Assignee: Intel Corporation
    Inventors: Aaron Lilak, Patrick Keys, Sayed Hasan, Stephen Cea, Anupama Bowonder
  • Patent number: 11469299
    Abstract: Gate-all-around integrated circuit structures having underlying dopant-diffusion blocking layers are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin. The fin includes a dopant diffusion blocking layer on a first semiconductor layer, and a second semiconductor layer on the dopant diffusion blocking layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 11, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Biswajeet Guha, Dax Crum, Patrick Keys, Tahir Ghani, Susmita Ghose, Ted Cook, Jr.
  • Publication number: 20220310601
    Abstract: Fin doping, and integrated circuit structures resulting therefrom, are described. In an example, an integrated circuit structure includes a semiconductor fin. A lower portion of the semiconductor fin includes a region having both N-type dopants and P-type dopants with a net excess of the P-type dopants of at least 2E18 atoms/cm3. A gate stack is over and conformal with an upper portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack, and a second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 29, 2022
    Inventors: Aaron D. LILAK, Cory WEBER, Stephen M. CEA, Leonard C. PIPES, Seahee HWANGBO, Rishabh MEHANDRU, Patrick KEYS, Jack YAUNG, Tzu-Min OU
  • Publication number: 20210257492
    Abstract: Multiple strain states in epitaxial transistor channel material may be achieved through the incorporation of stress-relief defects within a seed material. Selective application of strain may improve channel mobility of one carrier type without hindering channel mobility of the other carrier type. A transistor structure may have a heteroepitaxial fin including a first layer of crystalline material directly on a second layer of crystalline material. Within the second layer, a number of defected regions of a threshold minimum dimension are present, which induces the first layer of crystalline material to relax into a lower-strain state. The defected regions may be introduced selectively, for example a through a masked impurity implantation, so that the defected regions may be absent in some transistor structures where a higher-strain state in the first layer of crystalline material is desired.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 19, 2021
    Applicant: Intel Corporation
    Inventors: Aaron Lilak, Patrick Keys, Sayed Hasan, Stephen Cea, Anupama Bowonder
  • Publication number: 20210159312
    Abstract: An apparatus is provided which comprises: a plurality of nanowire transistors stacked vertically, wherein each nanowire transistor of the plurality of nanowire transistors comprises a corresponding nanowire of a plurality of nanowires; and a gate stack, wherein the gate stack fully encircles at least a section of each nanowire of the plurality of nanowires.
    Type: Application
    Filed: January 8, 2021
    Publication date: May 27, 2021
    Applicant: Intel Corporation
    Inventors: Aaron Lilak, Patrick Keys, Sean Ma, Stephen Cea, Rishabh Mehandru
  • Patent number: 10892326
    Abstract: An apparatus is provided which comprises: a plurality of nanowire transistors stacked vertically, wherein each nanowire transistor of the plurality of nanowire transistors comprises a corresponding nanowire of a plurality of nanowires; and a gate stack, wherein the gate stack fully encircles at least a section of each nanowire of the plurality of nanowires.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Aaron Lilak, Patrick Keys, Sean Ma, Stephen Cea, Rishabh Mehandru
  • Publication number: 20200105872
    Abstract: Gate-all-around integrated circuit structures having underlying dopant-diffusion blocking layers are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin. The fin includes a dopant diffusion blocking layer on a first semiconductor layer, and a second semiconductor layer on the dopant diffusion blocking layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Dax CRUM, Patrick KEYS, Tahir GHANI, Susmita GHOSE, Ted COOK, JR.
  • Publication number: 20190333990
    Abstract: An apparatus is provided which comprises: a plurality of nanowire transistors stacked vertically, wherein each nanowire transistor of the plurality of nanowire transistors comprises a corresponding nanowire of a plurality of nanowires; and a gate stack, wherein the gate stack fully encircles at least a section of each nanowire of the plurality of nanowires.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 31, 2019
    Applicant: Intel Corporation
    Inventors: Aaron Lilak, Patrick Keys, Sean Ma, Stephen Cea, Rishabh Mehandru
  • Publication number: 20070099404
    Abstract: A method for improving a microelectronic device interface with an ultra-fast anneal process at an intermediate temperature that may be lower than those used in a dopant activation process. In one embodiment, a partial recrystalization of an amorphous silicon layer in the source drain region that is the precursor to the metal salicide reaction is disclosed. Source/drain regions are first amorphized using an implant process, then a metal layer is deposited in the source/drain region which reacts with the silicon in a salicide formation anneal. Amorphization reduces problems with metal diffusion that can occur during salicide formation anneal process, which typically occurs at a temperature significantly lower than the dopant activation temperature.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 3, 2007
    Inventors: Sridhar Govindaraju, Jack Hwang, Seok-Hee Lee, Patrick Keys, Chad Lindfors
  • Publication number: 20060292776
    Abstract: An NMOS transistor may be formed with a biaxially strained silicon upper layer having a thickness of greater than 500 Angstroms. The resulting NMOS transistor may have good performance and may exhibit reduced self-heating. A PMOS transistor may be formed with both a biaxially and uniaxially strained silicon germanium layer. A source substrate bias applied to both NMOS and PMOS transistors can enhance their performance.
    Type: Application
    Filed: June 27, 2005
    Publication date: December 28, 2006
    Inventors: Been-Yih Jin, Robert Chau, Suman Datta, Brian Doyle, Jack Kavalieros, Justin Brask, Mark Doczy, Matthew Metz, Markus Kuhn, Marko Radosavlievic, M. Shaheed, Patrick Keys