Patents by Inventor Patrick L. Rosno

Patrick L. Rosno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10211205
    Abstract: A circuit component comprises a row of transistors. The row may contain a first active FET with a source region and a drain region. The row may also contain a first active dummy FET that shares the source region and that also has a diffusion region. The row may also contain a second active FET and a second active dummy FET, positioned such that the active dummy FETs are located between the active FETs on the row. The row may also have an end positioned such that the first active dummy FET is between the end and the first active FET. A supply of current may be electrically connected to the source diffusion regions. A load region may be electrically connected to the drain region. The first active FET and the first active dummy FET may have gates that share a voltage source or that have their own voltage source.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Brent R. Den Hartog, Eric J. Lukes, Matthew J. Paschal, Nghia V. Phan, Raymond A. Richetta, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Patent number: 10079595
    Abstract: Certain aspects of the present disclosure are directed to a circuit for driving a signal at an output node. The circuit generally includes a voltage divider network having a first terminal coupled to the output node. The circuit also includes a first transistor having a gate coupled to a second terminal of the voltage divider network and a plurality of transistors. A gate of each of the plurality of transistors may be coupled to a respective tap node of the voltage divider network, and the plurality of transistors may include a third transistor having a source coupled to a drain of the first transistor. The circuit may also include a second transistor coupled to the first transistor and having a gate coupled to an input node of the circuit.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: September 18, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent R. Den Hartog, Eric J. Lukes, Matthew J. Paschal, Nghia V. Phan, Raymond A. Richetta, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Patent number: 10075157
    Abstract: Certain aspects of the present disclosure are directed to a circuit for driving a signal at an output node. The circuit generally includes a voltage divider network having a first terminal coupled to the output node. The circuit also includes a first transistor having a gate coupled to a second terminal of the voltage divider network and a plurality of transistors. A gate of each of the plurality of transistors may be coupled to a respective tap node of the voltage divider network, and the plurality of transistors may include a third transistor having a source coupled to a drain of the first transistor. The circuit may also include a second transistor coupled to the first transistor and having a gate coupled to an input node of the circuit.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: September 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent R. Den Hartog, Eric J. Lukes, Matthew J. Paschal, Nghia V. Phan, Raymond A. Richetta, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Publication number: 20170317082
    Abstract: A circuit component comprises a row of transistors. The row may contain a first active FET with a source region and a drain region. The row may also contain a first active dummy FET that shares the source region and that also has a diffusion region. The row may also contain a second active FET and a second active dummy FET, positioned such that the active dummy FETs are located between the active FETs on the row. The row may also have an end positioned such that the first active dummy FET is between the end and the first active FET. A supply of current may be electrically connected to the source diffusion regions. A load region may be electrically connected to the drain region. The first active FET and the first active dummy FET may have gates that share a voltage source or that have their own voltage source.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Inventors: Brent R. Den Hartog, Eric J. Lukes, Matthew J. Paschal, Nghia V. Phan, Raymond A. Richetta, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Patent number: 9490775
    Abstract: A method and circuit are provided for implementing adaptive control for optimization of pulsed resonant drivers, and a design structure on which the subject circuit resides. Peak detectors are used to detect a positive or up level reached by a resonant clock and negative or down level reached by the resonant clock. Each detected levels is compared to a reference level to determine when to vary the turn off timing of a clock driver pull-up device and/or a clock driver pull-down device. A positive peak detector controls the turn off time of the pull-up device and a negative peak detector controls a turn off time of the pull-down device in the pulsed resonant driver.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 8, 2016
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Lukes, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Patent number: 9397638
    Abstract: A method and circuit are provided for implementing adaptive control for optimization of pulsed resonant drivers, and a design structure on which the subject circuit resides. Peak detectors are used to detect a positive or up level reached by a resonant clock and negative or down level reached by the resonant clock. Each detected levels is compared to a reference level to determine when to vary the turn off timing of a clock driver pull-up device and/or a clock driver pull-down device. A positive peak detector controls the turn off time of the pull-up device and a negative peak detector controls a turn off time of the pull-down device in the pulsed resonant driver.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: July 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Lukes, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Publication number: 20160182016
    Abstract: A method and circuit are provided for implementing adaptive control for optimization of pulsed resonant drivers, and a design structure on which the subject circuit resides. Peak detectors are used to detect a positive or up level reached by a resonant clock and negative or down level reached by the resonant clock. Each detected levels is compared to a reference level to determine when to vary the turn off timing of a clock driver pull-up device and/or a clock driver pull-down device. A positive peak detector controls the turn off time of the pull-up device and a negative peak detector controls a turn off time of the pull-down device in the pulsed resonant driver.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Eric J. Lukes, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Publication number: 20160182018
    Abstract: A method and circuit are provided for implementing adaptive control for optimization of pulsed resonant drivers, and a design structure on which the subject circuit resides. Peak detectors are used to detect a positive or up level reached by a resonant clock and negative or down level reached by the resonant clock. Each detected levels is compared to a reference level to determine when to vary the turn off timing of a clock driver pull-up device and/or a clock driver pull-down device. A positive peak detector controls the turn off time of the pull-up device and a negative peak detector controls a turn off time of the pull-down device in the pulsed resonant driver.
    Type: Application
    Filed: April 24, 2015
    Publication date: June 23, 2016
    Inventors: Eric J. Lukes, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Publication number: 20160105161
    Abstract: A method and circuit for implementing a broadband resonator for resonant clock distribution, and a design structure on which the subject circuit resides are provided. The circuit includes a pair of first inductors, and a second inductor and a capacitor coupled between a respective first end of the respective first inductors. An opposite free end of the respective first inductors is connected to a respective clock transmission line and connected in parallel to a load capacitance. A frequency response of the circuit includes two poles and a zero in a frequency band of the resonant clock distribution system.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 14, 2016
    Inventors: Santhosh Madhavan, Giri N. K. Rangan, Patrick l. Rosno, Timothy J. Schmerbeck
  • Patent number: 9312860
    Abstract: A gated differential logic circuit can include a header device having a first terminal coupled to a supply voltage, and a second terminal; a second header device having a third terminal coupled to the supply voltage, and a fourth terminal; a footer device having a fifth terminal coupled to ground, and a sixth terminal; and a second footer device having a seventh terminal coupled to ground, and an eighth terminal. The circuit further includes a driver circuit having a first supply terminal coupled to the second terminal and a first ground terminal coupled to the sixth terminal, and a second driver circuit having a second supply terminal coupled to the fourth terminal and a second ground terminal coupled to the eighth terminal. A capacitor can couple the first supply terminal to the second ground terminal, while a second capacitor may couple the second supply terminal to the first ground terminal.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Paschal, Raymond A. Richetta, Patrick L. Rosno, Timothy J. Schmerbeck, Dereje G. Yilma
  • Publication number: 20150364382
    Abstract: A semiconductor chip device may include a silicon on insulator (SOI) base, a first transistor, and a voltage device. The SOI base may include a semiconductor substrate having a first doped layer and a second doped layer directly on the first doped layer, a buried oxide layer directly on the second doped layer, and a first moat electrically isolating a first bias region of the second doped layer. The first bias region may be electrically coupled to a current source. The first transistor may be formed above the buried oxide layer and the first bias region. The first transistor may include a first drain a first source a first body a first gate and a first back gate. The voltage device may be electrically coupled to the first back gate and the first gate and configured to maintain a voltage difference between the first gate and the first back gate.
    Type: Application
    Filed: September 23, 2014
    Publication date: December 17, 2015
    Inventors: Eric J. Lukes, Nghia V. Phan, Patrick L. Rosno, Dereje G. Yilma
  • Publication number: 20150364498
    Abstract: A semiconductor chip device may include a silicon on insulator (SOI) base, a first transistor, and a voltage device. The SOI base may include a semiconductor substrate having a first doped layer and a second doped layer directly on the first doped layer, a buried oxide layer directly on the second doped layer, and a first moat electrically isolating a first bias region of the second doped layer. The first bias region may be electrically coupled to a current source. The first transistor may be formed above the buried oxide layer and the first bias region. The first transistor may include a first drain a first source a first body a first gate and a first back gate. The voltage device may be electrically coupled to the first back gate and the first gate and configured to maintain a voltage difference between the first gate and the first back gate.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 17, 2015
    Inventors: Eric J. Lukes, Nghia V. Phan, Patrick L. Rosno, Dereje G. Yilma
  • Patent number: 8310298
    Abstract: A design structure embodied in a machine readable medium used in a design process includes a current mirror circuit that includes a reference current source that generates a reference current, a reference transistor, a mirror transistor and a ratioed body bias feedback unit. The reference transistor has a first node that is coupled to the output of the reference current source, a gate that is coupled to the first node and a second node coupled to a common voltage. The mirror transistor has a gate coupled to the first node. The ratioed body bias feedback unit generates a body bias voltage coupled to the body of the reference transistor and the body of the mirror transistor. The ratioed body bias feedback unit is configured to adjust the body bias voltage in relationship to the common voltage so that the reference transistor and the mirror transistor each have a threshold voltage within a predefined range.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: November 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Baumgartner, Patrick L. Rosno, Dana M. Woeste
  • Patent number: 7652523
    Abstract: A current mirror circuit includes a reference current source that generates a reference current, a reference transistor, a mirror transistor and a ratioed body bias feedback unit. The reference transistor has a first node that is coupled to the output of the reference current source, a gate that is coupled to the first node and a second node coupled to a common voltage. The mirror transistor has a gate coupled to the first node. The ratioed body bias feedback unit generates a body bias voltage coupled to the body of the reference transistor and the body of the mirror transistor. The ratioed body bias feedback unit is configured to adjust the body bias voltage in relationship to the common voltage so that the reference transistor and the mirror transistor each have a threshold voltage within a predefined range.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Baumgartner, Patrick L. Rosno, Dana M. Woeste
  • Patent number: 7474144
    Abstract: A current mirror circuit includes a reference current source that generates a reference current, a reference transistor, a mirror transistor and a ratioed body bias feedback unit. The reference transistor has a first node that is coupled to the output of the reference current source, a gate that is coupled to the first node and a second node coupled to a common voltage. The mirror transistor has a gate coupled to the first node. The ratioed body bias feedback unit generates a body bias voltage coupled to the body of the reference transistor and the body of the mirror transistor. The ratioed body bias feedback unit is configured to adjust the body bias voltage in relationship to the common voltage so that the reference transistor and the mirror transistor each have a threshold voltage within a predefined range.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Baumgartner, Patrick L. Rosno, Dana M. Woeste
  • Publication number: 20080191793
    Abstract: A current mirror circuit includes a reference current source that generates a reference current, a reference transistor, a mirror transistor and a ratioed body bias feedback unit. The reference transistor has a first node that is coupled to the output of the reference current source, a gate that is coupled to the first node and a second node coupled to a common voltage. The mirror transistor has a gate coupled to the first node. The ratioed body bias feedback unit generates a body bias voltage coupled to the body of the reference transistor and the body of the mirror transistor. The ratioed body bias feedback unit is configured to adjust the body bias voltage in relationship to the common voltage so that the reference transistor and the mirror transistor each have a threshold voltage within a predefined range.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 14, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Baumgartner, Patrick L. Rosno, Dana M. Woeste
  • Publication number: 20080072181
    Abstract: A design structure embodied in a machine readable medium used in a design process includes a current mirror circuit that includes a reference current source that generates a reference current, a reference transistor, a mirror transistor and a ratioed body bias feedback unit. The reference transistor has a first node that is coupled to the output of the reference current source, a gate that is coupled to the first node and a second node coupled to a common voltage. The mirror transistor has a gate coupled to the first node. The ratioed body bias feedback unit generates a body bias voltage coupled to the body of the reference transistor and the body of the mirror transistor. The ratioed body bias feedback unit is configured to adjust the body bias voltage in relationship to the common voltage so that the reference transistor and the mirror transistor each have a threshold voltage within a predefined range.
    Type: Application
    Filed: October 2, 2007
    Publication date: March 20, 2008
    Applicant: International Business Machines Corporation
    Inventors: Steven J. Baumgartner, Patrick L. Rosno, Dana M. Woeste
  • Publication number: 20080068072
    Abstract: A current mirror circuit includes a reference current source that generates a reference current, a reference transistor, a mirror transistor and a ratioed body bias feedback unit. The reference transistor has a first node that is coupled to the output of the reference current source, a gate that is coupled to the first node and a second node coupled to a common voltage. The mirror transistor has a gate coupled to the first node. The ratioed body bias feedback unit generates a body bias voltage coupled to the body of the reference transistor and the body of the mirror transistor. The ratioed body bias feedback unit is configured to adjust the body bias voltage in relationship to the common voltage so that the reference transistor and the mirror transistor each have a threshold voltage within a predefined range.
    Type: Application
    Filed: September 20, 2006
    Publication date: March 20, 2008
    Inventors: Steven J. Baumgartner, Patrick L. Rosno, Dana M. Woeste
  • Patent number: 6677802
    Abstract: An apparatus for biasing a body voltage of a silicon-on-insulator transistor includes an operational amplifier that generates an output voltage that is proportional to the voltage difference between a desired gate-source threshold voltage and a reference voltage. A reference biasing transistor has a gate that is electrically coupled to the output. A reference mirror transistor has both a gate and a drain that are electrically coupled to the current source node, and also has a body that is electrically coupled to the drain of the reference biasing transistor. A device biasing transistor has a gate that is electrically coupled to the output voltage and has a drain that is electrically coupled to the body of the silicon-on-insulator transistor. The device biasing transistor maintains a voltage at the body of the silicon-on-insulator transistor so that it has a gate-source threshold voltage within a predetermined range of the desired gate-source threshold voltage.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: January 13, 2004
    Assignee: International Business Machines Corporation
    Inventors: James D. Strom, Patrick L. Rosno
  • Publication number: 20030042968
    Abstract: An apparatus for biasing a body voltage of a silicon-on-insulator transistor includes an operational amplifier that generates an output voltage that is proportional to the voltage difference between a desired gate-source threshold voltage and a reference voltage. A reference biasing transistor has a gate that is electrically coupled to the output. A reference mirror transistor has both a gate and a drain that are electrically coupled to the current source node, and also has a body that is electrically coupled to the drain of the reference biasing transistor. A device biasing transistor has a gate that is electrically coupled to the output voltage and has a drain that is electrically coupled to the body of the silicon-on-insulator transistor. The device biasing transistor maintains a voltage at the body of the silicon-on-insulator transistor so that it has a gate-source threshold voltage within a predetermined range of the desired gate-source threshold voltage.
    Type: Application
    Filed: September 5, 2001
    Publication date: March 6, 2003
    Inventors: James D. Strom, Patrick L. Rosno