Patents by Inventor Patrick Le Bihan

Patrick Le Bihan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10775496
    Abstract: A method comprises at least: a first radar processing for locating and estimating the trajectory of a target on the basis of measurements of radial distances, of Doppler frequency and of angle of azimuth and of elevation of the target arising from a radar signal emitted towards the target; a second radar processing of location and of trajectory of the target along a vertical axis, by applying the principle of the inverse synthetic antenna; the disparity between the given trajectory and the trajectory estimated by the first processing, projected on a horizontal plane, and the disparity between the given trajectory and the trajectory estimated by the second processing according to the vertical axis being used to control the direction of displacement of the target.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: September 15, 2020
    Assignee: THALES
    Inventors: Pascal Cornic, Patrick Garrec, Patrick Le Bihan
  • Patent number: 10585186
    Abstract: A radar attached laterally to airplane fuselage to detect obstacles on a collision course with a portion of the airplane facing the radar. The radar includes an emission antennal channel and reception antennal channels in the same plane. The radar Establishing in a radar coordinate system a first distance/Doppler map allowing echoes to be separated into distance and Doppler resolution cells in reception antennal channels; Establishing a second distance/Doppler map of smaller size by selecting a subset of distance/Doppler resolution cells corresponding to possible positions of targets liable to collide with the airplane; Establishing new distance/Doppler maps by forming beams computationally from the subsets of distance resolution cells; and Temporal integration, in each beam, of successive distance/Doppler maps.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: March 10, 2020
    Assignee: THALES
    Inventors: Pascal Cornic, Patrick Le Bihan, Yves Audic
  • Patent number: 10551488
    Abstract: A detection method implementing an FMCW waveform is provided, the emitted waveform is formed of a recurring pattern of given period Tr covering an emission frequency band of given width B, each pattern being divided into a given number P of sub-patterns of duration Tr/P covering an excursion frequency band ?F=B/P, the sub-patterns being mutually spaced by a frequency interval equal to ?F.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: February 4, 2020
    Assignee: THALES
    Inventors: Pascal Cornic, Patrick Le Bihan, Jean-Michel Quellec
  • Patent number: 10386397
    Abstract: A digital receiver comprising at least two reception pathways, the method carries out a digital inter-correlation of the signals obtained as output from at least two filters of different central frequencies and different ranks, the rank and the central frequency of the filters being chosen as a function of a determined frequency-wise search domain. For a determined search domain, the various sampling frequencies of the reception pathways are chosen so that the ambiguous frequencies resulting from the spectral aliasings vary as a monotonic function of the true frequency of the signals.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: August 20, 2019
    Assignee: THALES
    Inventors: Pascal Cornic, Patrick Le Bihan, Joël Fillatre
  • Publication number: 20180284263
    Abstract: A method comprises at least: a first radar processing for locating and estimating the trajectory of a target on the basis of measurements of radial distances, of Doppler frequency and of angle of azimuth and of elevation of the target arising from a radar signal emitted towards the target; a second radar processing of location and of trajectory of the target along a vertical axis, by applying the principle of the inverse synthetic antenna; the disparity between the given trajectory and the trajectory estimated by the first processing, projected on a horizontal plane, and the disparity between the given trajectory and the trajectory estimated by the second processing according to the vertical axis being used to control the direction of displacement of the target.
    Type: Application
    Filed: March 22, 2018
    Publication date: October 4, 2018
    Inventors: Pascal CORNIC, Patrick GARREC, Patrick LE BIHAN
  • Publication number: 20180045819
    Abstract: A detection method implementing an FMCW waveform is provided, the emitted waveform is formed of a recurring pattern of given period Tr covering an emission frequency band of given width B, each pattern being divided into a given number P of sub-patterns of duration Tr/P covering an excursion frequency band ?F=B/P, the sub-patterns being mutually spaced by a frequency interval equal to ?F.
    Type: Application
    Filed: July 13, 2017
    Publication date: February 15, 2018
    Inventors: Pascal CORNIC, Patrick LE BIHAN, Jean-Michel QUELLEC
  • Publication number: 20170336450
    Abstract: A digital receiver comprising at least two reception pathways, the method carries out a digital inter-correlation of the signals obtained as output from at least two filters of different central frequencies and different ranks, the rank and the central frequency of the filters being chosen as a function of a determined frequency-wise search domain. For a determined search domain, the various sampling frequencies of the reception pathways are chosen so that the ambiguous frequencies resulting from the spectral aliasings vary as a monotonic function of the true frequency of the signals.
    Type: Application
    Filed: September 24, 2015
    Publication date: November 23, 2017
    Inventors: Pascal CORNIC, Patrick LE BIHAN, Joël FILLATRE
  • Patent number: 9488720
    Abstract: An active and passive detection device is provided with a low probability of interception having a fixed antenna structure, transmission means and reception means. The antenna structure is formed by a plurality of radiating elements grouped into identical subnetworks and comprises at least one transmission subnetwork and at least three reception subnetworks. The transmission means are capable of generating an unfocused continuous waveform having low peak power in one plane and of transmitting said waveform. The reception means are capable of detecting the targets following the formation of a plurality of directional beams on the basis of the signals received on the reception subnetworks. The reception means are likewise capable of implementing the interception of radar signals from other radar sources using cross correlation processing between the signals received on at least three reception subnetworks.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: November 8, 2016
    Assignee: THALES
    Inventors: Pascal Cornic, Patrick Le Bihan, Stephane Kemkemian
  • Publication number: 20160259048
    Abstract: A radar attached laterally to airplane fuselage to detect obstacles on a collision course with a portion of the airplane facing the radar, comprises an emission antennal channel and reception antennal channels in the same plane, the form of the wave and field of angular coverage of the radar depending on the velocity of the airplane, the processing means comprising the steps: Establishing in the radar coordinate system a first distance/Doppler map allowing echoes to be separated into distance and Doppler resolution cells in a reception antennal channels; Establishing a second distance/Doppler map of smaller size by selecting a subset of distance/Doppler resolution cells corresponding to the possible positions of targets liable to collide with the wing of the airplane; Establishing new distance/Doppler maps by forming beams computationally from the subsets of distance resolution cells retained for each reception antennal channel; and Temporal integration, in each beam, of successive distance/Doppler maps.
    Type: Application
    Filed: November 7, 2014
    Publication date: September 8, 2016
    Inventors: Pascal CORNIC, Patrick LE BIHAN, Yves AUDIC
  • Publication number: 20160131754
    Abstract: A device for detecting electromagnetic signals comprising an array receive antenna having N radiating elements and M receive channels downstream of the receive antenna, M less than N, the pointing directions of the antenna, equal to the radiating elements, obtained by adaptive beamforming and regularly spaced apart, comprises: switching the M receive channels onto the radiating elements in successive sequence cycles, M radiating elements connected to the receive channels with each sequence, the same radiating element, being the reference element, connected to the receive channels for all sequences, one cycle completed when all radiating elements are connected to one of the receive channels; for each sequence, estimating two-by-two spatial correlations of the signal received on the reference channel and the signals received on the other M-1 receive channels, then estimating the spatial power spectral density in N incoming directions based on a coherent sum of N correlation terms obtained.
    Type: Application
    Filed: July 15, 2014
    Publication date: May 12, 2016
    Inventors: Pascal CORNIC, Patrick LE BIHAN, Régis LEVAUFRE
  • Publication number: 20150048965
    Abstract: An active and passive detection device is provided with a low probability of interception having a fixed antenna structure, transmission means and reception means. The antenna structure is formed by a plurality of radiating elements grouped into identical subnetworks and comprises at least one transmission subnetwork and at least three reception subnetworks. The transmission means are capable of generating an unfocused continuous waveform having low peak power in one plane and of transmitting said waveform. The reception means are capable of detecting the targets following the formation of a plurality of directional beams on the basis of the signals received on the reception subnetworks. The reception means are likewise capable of implementing the interception of radar signals from other radar sources using cross correlation processing between the signals received on at least three reception subnetworks.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Inventors: Pascal Cornic, Patrick Le Bihan, Stephane Kemkemain
  • Patent number: 8786487
    Abstract: A radar includes a transmitting antenna and receiving antenna formed by an array of radiant elements. Antenna beams are calculated in P directions by a BFC function. Detections of a target by secondary lobes of the beams are processed by an algorithm comparing levels received in a distance-speed resolution cell, a single detection at most not being possible for each distance-speed resolution cell. Processing means use the assumption that there may probably be more than one echo with a signal-to-noise ratio that is sufficient to be detectable, for a given resolution cell of the radar, either in speed mode or in distance mode, or, alternatively, a distance-speed depending on the processing implemented; and, if there is more than one echo detectable for each resolution cell out of the plurality of beams formed by BFC, only the echo and BFC that obtain maximum power or maximum signal-to-noise ratio are/is considered valid.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Thales
    Inventors: Stephane Kemkemian, Pascal Cornic, Patrick Garrec, Patrick Le Bihan, Myriam Nouvel-Fiani
  • Patent number: 8493265
    Abstract: A method includes: generating a frequency-modulated continuous signal, an emission sequence being formed of successive ramps centered on a carrier frequency; fixing a modulation band ?F and the duration Tr of a recurrence in such a way that at the range limit, a reception ramp appears shifted by at least one given frequency with respect to the corresponding emission ramp, on account of the propagation delay for the outward-return journey to a target kTr+?, k being an integer and ? a duration less than Tr; demodulating the signal received by the signal emitted, the resulting signal including a first sinusoid at the frequency ?Fdim=(1?(?/Tr)·?F and a second sinusoid at the frequency ?Fd=(?/Tr)·?F; sampling the resulting signal and performing a first fast Fourier transformation on this resulting signal over the duration of each emission ramp; detecting in the resulting spectrum the spectral lines appearing at the frequencies ?Fd and ?Fdim, and performing the vector sum of these two spectral lines after resetting
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 23, 2013
    Assignee: Thales
    Inventors: Pascal Cornic, Patrick Le Bihan, Stéphane Kemkemian
  • Patent number: 8482455
    Abstract: The present invention relates to a radar device with high angular accuracy. The solution provided by the invention simultaneously combines an interferometer that is accurate but, for example, ambiguous when receiving; and a space coloring mode when transmitting. The coloring of the space consists notably in transmitting on N transmitting antennas N orthogonal signals. These signals are then separated by filtering on reception using the orthogonality properties of the transmission signals. It is, for example, possible, with two contiguous antennas in transmission associated with two orthogonal codes to produce a single-pulse type system when transmitting. The invention applies notably to the obstacle sensing and avoidance function, also called “Sense & Avoid”.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: July 9, 2013
    Assignee: Thales
    Inventors: Stéphane Kemkemian, Pascal Cornic, Patrick Le Bihan
  • Patent number: 8432307
    Abstract: A radar device includes an antenna having at least two linear arrays of radiating elements being orthogonal to one another, a first array being used to focus a transmission beam in a first plane and a second beam being used to focus a reception beam in a second plane, orthogonal to the first plane. The focussing of the beam is obtained in the first plane by colored emission followed by a reception beam formation by computation, and in that the focussing of the beam is obtained in the second plane using reception beam formation by computation. The colored emission is carried out by combining antenna transmission sub-arrays in such a manner as to form a sum channel and a difference on reception channel according to the monopulse technique.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 30, 2013
    Assignee: Thales
    Inventors: Pascal Cornic, Patrick Le Bihan, Stéphane Kemkemian
  • Patent number: 8299958
    Abstract: An airborne radar device having a given angular coverage in elevation and in azimuth includes a transmit system, a receive system and processing means for carrying out target detection and location measurements. The transmit system includes: a transmit antenna made up of at least a first linear array of radiating elements focusing a transmit beam, said arrays being approximately parallel to one another; at least one waveform generator; means for amplifying the transmit signals produced by the waveform generator or generators; and means for controlling the transmit signals produced by the waveform generator or generators, said control means feeding each radiating element with a transmit signal. The radiating elements being controlled for simultaneously carrying out electronic scanning of the transmit beam in elevation and for colored transmission in elevation.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: October 30, 2012
    Assignee: Thales
    Inventors: Stépahne Kemkemian, Pascal Cornic, Patrick Le Bihan, Myriam Nouvel-Fiani
  • Publication number: 20120081247
    Abstract: A radar includes a transmitting antenna and receiving antenna formed by an array of radiant elements. Antenna beams are calculated in P directions by a BFC function. Detections of a target by secondary lobes of the beams are processed by an algorithm comparing levels received in a distance-speed resolution cell, a single detection at most not being possible for each distance-speed resolution cell. Processing means use the assumption that there may probably be more than one echo with a signal-to-noise ratio that is sufficient to be detectable, for a given resolution cell of the radar, either in speed mode or in distance mode, or, alternatively, a distance-speed depending on the processing implemented; and, if there is more than one echo detectable for each resolution cell out of the plurality of beams formed by BFC, only the echo and BFC that obtain maximum power or maximum signal-to-noise ratio are/is considered valid.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 5, 2012
    Applicant: THALES
    Inventors: Stephane KEMKEMIAN, Pascal CORNIC, Patrick GARREC, Patrick LE BIHAN, Myriam NOUVEL-FIANI
  • Publication number: 20110248881
    Abstract: The present invention relates to a radar device with high angular accuracy. The solution provided by the invention simultaneously combines an interferometer that is accurate but, for example, ambiguous when receiving; and a space colouring mode when transmitting. The colouring of the space consists notably in transmitting on N transmitting antennas N orthogonal signals. These signals are then separated by filtering on reception using the orthogonality properties of the transmission signals. It is, for example, possible, with two contiguous antennas in transmission associated with two orthogonal codes to produce a single-pulse type system when transmitting. The invention applies notably to the obstacle sensing and avoidance function, also called “Sense & Avoid”.
    Type: Application
    Filed: October 11, 2010
    Publication date: October 13, 2011
    Applicant: THALES
    Inventors: Stéphane Kemkemian, Pascal Cornic, Patrick Le Bihan
  • Publication number: 20110221625
    Abstract: A radar device includes an antenna having at least two linear arrays of radiating elements being orthogonal to one another, a first array being used to focus a transmission beam in a first plane and a second beam being used to focus a reception beam in a second plane, orthogonal to the first plane. The focussing of the beam is obtained in the first plane by coloured emission followed by a reception beam formation by computation, and in that the focussing of the beam is obtained in the second plane using reception beam formation by computation. The coloured emission is carried out by combining antenna transmission sub-arrays in such a manner as to form a sum channel and a difference on reception channel according to the monopulse technique.
    Type: Application
    Filed: September 14, 2010
    Publication date: September 15, 2011
    Applicant: THALES
    Inventors: Pascal Cornic, Patrick Le Bihan, Stéphane Kemkemian
  • Publication number: 20110187586
    Abstract: A method includes: generating a frequency-modulated continuous signal, an emission sequence being formed of successive ramps centred on a carrier frequency; fixing a modulation band ?F and the duration Tr of a recurrence in such a way that at the range limit, a reception ramp appears shifted by at least one given frequency with respect to the corresponding emission ramp, on account of the propagation delay for the outward-return journey to a target kTr+?, k being an integer and ? a duration less than Tr; demodulating the signal received by the signal emitted, the resulting signal including a first sinusoid at the frequency ?Fdim=(1?(?/Tr)·?F and a second sinusoid at the frequency ?Fd=(?/Tr)·?F; sampling the resulting signal and performing a first fast Fourier transformation on this resulting signal over the duration of each emission ramp; detecting in the resulting spectrum the spectral lines appearing at the frequencies ?Fd and ?Fdim, and performing the vector sum of these two spectral lines after resetting
    Type: Application
    Filed: December 16, 2010
    Publication date: August 4, 2011
    Applicant: THALES
    Inventors: Pascal CORNIC, Patrick LE BIHAN, Stéphane KEMKEMIAN