Patents by Inventor Patrick Lo

Patrick Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9053452
    Abstract: A system and method for ordering supplies, includes a portable barcode scanner configured to output data according to at least one of an HID, CDC or SPP protocol. A mobile phone device incapable of recognizing and parsing data when the data is configured according to the HID, CDC or SPP protocol is connected to the scanner using a communication connection. A scanner adapter application on the mobile phone device, which receives the output data comprising order data, is configured to parse the order data and pass it to an upload application having a current data field that receives at least part of the order data. A listener server configured to receive the at least part of the order data from the upload application processes the order information into an electronic order, and sends the electronic order to a vendor server.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: June 9, 2015
    Assignee: MSC Services Corp.
    Inventors: Charles Bonomo, Alan P. Yang, Joseph Patrick Lo Faso, Brian Todd Reardon, David W. Hopkins
  • Patent number: 9046494
    Abstract: According to embodiments of the present invention, an optical sensing system is provided. The optical sensing system includes a resonator arrangement including a first resonator, wherein an effective refractive index of the first resonator is changeable in response to a change in a refractive index of a cladding of the first resonator, and a second resonator to which a current or voltage being adjustable in response to a change in the effective refractive index of the first resonator is applied, wherein the optical sensing system is configured to determine the change in the effective refractive index of the first resonator based on a change in the current or voltage applied to the second resonator. Further embodiments provide a method of determining a change in an effective refractive index of a resonator of an optical sensing system.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: June 2, 2015
    Assignee: Agency for Science, Technology and Research
    Inventors: Junfeng Song, Xianshu Luo, Qing Fang, Mingbin Yu, Guo Qiang Patrick Lo
  • Patent number: 9002163
    Abstract: An optical converter and a method of manufacturing the optical converter are provided. The optical converter may include a signal receiving portion configured to receive an optical signal from an optical fiber which can be coupled to the optical converter, a signal output portion configured to output the optical signal received by the signal receiving portion, and a signal coupling portion being disposed between the signal receiving portion and the signal output portion and being configured to couple the optical signal received by the signal receiving portion into the signal output portion. The signal output portion may include a waveguide element having at least one tapered end section, and being partially or wholly surrounded by the signal coupling portion. The at least one tapered end section may be configured to couple the optical signal from the signal coupling portion into the waveguide element and the waveguide element may be configured to output the optical signal.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 7, 2015
    Assignee: Agency for Science, Technology and Research
    Inventors: Qing Fang, Tsung-Yang Liow, Mingbin Yu, Guo Qiang Patrick Lo
  • Publication number: 20130292465
    Abstract: A system and method for ordering supplies, includes a portable barcode scanner configured to output data according to at least one of an HID, CDC or SPP protocol. A mobile phone device incapable of recognizing and parsing data when the data is configured according to the HID, CDC or SPP protocol is connected to the scanner using a communication connection. A scanner adapter application on the mobile phone device, which receives the output data comprising order data, is configured to parse the order data and pass it to an upload application having a current data field that receives at least part of the order data. A listener server configured to receive the at least part of the order data from the upload application processes the order information into an electronic order, and sends the electronic order to a vendor server.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 7, 2013
    Inventors: Charles Bonomo, Alan P. Yang, Joseph Patrick Lo Faso, Brian Todd Reardon, David W. Hopkins
  • Publication number: 20130270336
    Abstract: A system and method for ordering supplies, includes a portable barcode scanner configured to output data according to at least one of an HID, CDC or SPP protocol. A mobile phone device incapable of recognizing and parsing data when the data is configured according to the HID, CDC or SPP protocol is connected to the scanner using a communication connection. A scanner adapter application on the mobile phone device, which receives the output data comprising order data, is configured to parse the order data and pass it to an upload application having a current data field that receives at least part of the order data. A listener server configured to receive the at least part of the order data from the upload application processes the order information into an electronic order, and sends the electronic order to a vendor server.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Inventors: Charles Bonomo, Alan P. Yang, Joseph Patrick Lo Faso, Brian Todd Reardon, David W. Hopkins
  • Publication number: 20130270508
    Abstract: According to embodiments of the present invention, a non-volatile memory device is provided. The non-volatile memory device includes a nanowire transistor including a nanowire channel, and a resistive memory cell arranged adjacent to the nanowire transistor and in alignment with a longitudinal axis of the nanowire channel. According to further embodiments of the present invention, a method of forming a non-volatile memory device is also provided.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 17, 2013
    Applicant: Agency for Science, Technology and Research
    Inventors: Xiang LI, Navab Singh, Zhixian Chen, Xinpeng Wang, Guo-Qiang Patrick Lo
  • Patent number: 8538214
    Abstract: An embodiment of the invention relates to an optical resonator. The optical resonator includes an input optical waveguide and a closed loop coupled to the input optical waveguide. The closed loop is adapted to receive light from the input optical waveguide, wherein the closed loop includes at least one hole formed within a portion of the closed loop.
    Type: Grant
    Filed: June 29, 2008
    Date of Patent: September 17, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Xian Tong Chen, Shao Hua Tao, Guo-Qiang Patrick Lo, Shi Yang Zhu
  • Patent number: 8500278
    Abstract: Apparatus for testing a subject's visual field includes a data processor, which can be provided by a general purpose computer, coupled to a pupil tracking system. The data processor is programmed to cause targets to be displayed at different locations on a display screen and to determine from the pupil tracking system whether the subject's pupil has moved in response to display of each target. In some embodiments, the pupil tracking system comprises an infrared camera.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: August 6, 2013
    Inventors: Patrick Lo, Liang Chen, Chi Ho To
  • Publication number: 20130071058
    Abstract: An optical modulator and a method for manufacturing an optical modulator are provided.
    Type: Application
    Filed: March 10, 2011
    Publication date: March 21, 2013
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Eu-Jin Andy Lim, Kah Wee Ang, Qing Fang, Tsung-Yang Jason Liow, Mingbin Yu, Guo Qiang Patrick Lo
  • Patent number: 8362494
    Abstract: An electro-optic device is disclosed. The electro-optic device includes an insulating layer, a first semiconducting region disposed above the insulating layer and being doped with doping atoms of a first conductivity type, a second semiconducting region disposed above the insulating layer and being doped with doping atoms of a second conductivity type and an electro-optic active region disposed above the insulating layer and between the first semiconducting region and the second semiconducting region. The electro-optic active region includes a first partial active region and a second partial active region and an insulating structure in between. The insulating structure extends perpendicular to the surface of the insulating layer such that there is no overlap of the first partial active region and the second partial active region in the direction perpendicular to the surface of the insulating layer. A method for manufacturing is also disclosed.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: January 29, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Guo-Qiang Patrick Lo, Kee-Soon Darryl Wang, Wei-Yip Loh, Mingbin Yu, Junfeng Song
  • Publication number: 20120328243
    Abstract: An optical converter and a method of manufacturing the optical converter are provided. The optical converter may include a signal receiving portion configured to receive an optical signal from an optical fiber which can be coupled to the optical converter, a signal output portion configured to output the optical signal received by the signal receiving portion, and a signal coupling portion being disposed between the signal receiving portion and the signal output portion and being configured to couple the optical signal received by the signal receiving portion into the signal output portion. The signal output portion may include a waveguide element having at least one tapered end section, and being partially or wholly surrounded by the signal coupling portion. The at least one tapered end section may be configured to couple the optical signal from the signal coupling portion into the waveguide element and the waveguide element may be configured to output the optical signal.
    Type: Application
    Filed: December 23, 2009
    Publication date: December 27, 2012
    Inventors: Qing Fang, Tsung-Yang Liow, Mingbin Yu, Guo Qiang Patrick Lo
  • Patent number: 8319302
    Abstract: The wafer arrangement (100) provided comprises a first wafer (101), which comprises an integrated circuit and a recess (105). The wafer arrangement further comprises a portion of a second wafer (103), which comprises a carrier portion and a protrusion (107), the protrusion comprising an active component or actively controlled component (109) such as a MEMS component, wherein the portion of the second wafer (103) is coupled to the first wafer (101) such that the protrusion (107) is received in the recess (105). The invention provides a mechanism for accurately aligning an active component (109) on the second wafer (103) with components on the first wafer (101), such as photonic, electronic or optical components.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: November 27, 2012
    Assignee: Agency for Science, Technology and Research
    Inventors: Qingxin Zhang, Guo-Qiang Patrick Lo, Mingbin Yu, Dim-Lee Kwong
  • Publication number: 20120280345
    Abstract: According to embodiments of the present invention, a photodetector is provided. The photodetector includes a substrate, a waveguide formed on a surface of the substrate, a first metal layer formed on a first side of the waveguide, wherein a first interface is defined between the waveguide and the first metal layer, and a silicide layer formed on a second side of the waveguide, wherein a second interface is defined between the waveguide and the silicide layer, and wherein the second side is opposite to the first side, and wherein at least one of the first interface and the second interface is at least substantially perpendicular to the surface of the substrate. Various embodiments further provide a method of forming the photodetector.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 8, 2012
    Inventors: Shiyang Zhu, Guo-Qiang Patrick Lo
  • Publication number: 20120201488
    Abstract: In an embodiment, a phase shifting device may be provided. The phase shifting device may include a supporting layer and a semiconducting layer disposed above the supporting layer. The semiconducting layer may include a first doped region doped with doping atoms of a first conductivity type and arranged on the supporting layer; and a second doped region doped with doping atoms of a second conductivity type being different from the first conductivity type; wherein the second doped region may be disposed over the first doped region such that a first doped regions junction may be formed in a direction substantially parallel to a surface of the supporting layer and a second doped regions junction may be formed in a direction substantially perpendicular to the surface of the supporting layer. A method of forming a phase shifting device and an electro-optic device may also be provided.
    Type: Application
    Filed: June 22, 2009
    Publication date: August 9, 2012
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Tsung-Yang Jason Liow, Guo Qiang Patrick Lo, Mingbin Yu, Qing Fang
  • Publication number: 20120194803
    Abstract: According to embodiments of the present invention, an optical sensing system is provided. The optical sensing system includes a resonator arrangement including a first resonator, wherein an effective refractive index of the first resonator is changeable in response to a change in a refractive index of a cladding of the first resonator, and a second resonator to which a current or voltage being adjustable in response to a change in the effective refractive index of the first resonator is applied, wherein the optical sensing system is configured to determine the change in the effective refractive index of the first resonator based on a change in the current or voltage applied to the second resonator. Further embodiments provide a method of determining a change in an effective refractive index of a resonator of an optical sensing system.
    Type: Application
    Filed: December 28, 2011
    Publication date: August 2, 2012
    Inventors: Junfeng SONG, Xianshu Luo, Qing Fang, Mingbin Yu, Guo Qiang Patrick Lo
  • Publication number: 20120189239
    Abstract: According to embodiments of the present invention, an optical modulator is provided. The optical modulator includes a depletion region comprising a junction between from a first conductivity type portion and a second conductivity type portion, a first intrinsic region, and a second intrinsic region, and wherein the depletion region is disposed between the first intrinsic region and the second intrinsic region.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 26, 2012
    Inventors: Xiaoguang TU, Tsung-Yang Jason Liow, Guo Qiang Patrick Lo
  • Publication number: 20120043527
    Abstract: According to embodiments of the present invention, a light emitting device is provided. The light emitting device includes: an active region comprising at least one p-i-n junction, the at least one p-i-n junction comprising a p-doped region, an intrinsic region and an n-doped region; a first contact; and a second contact, wherein the active region is disposed between the first contact and the second contact; and wherein a voltage applied to the first contact and the second contact produces a current configured to flow between the first contact and the second contact in a direction substantially parallel to a surface of the intrinsic region of the active region configured to emit a light. According to embodiments of the present invention, the intrinsic region includes a multiple quantum well (MQW) such that a current injected flows laterally in a direction substantially parallel to the surface of the wells of the MQW.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Inventors: Liang Ding, Mingbin Yu, Guo Qiang Patrick Lo
  • Publication number: 20110317972
    Abstract: Embodiments provide an optical device including a carrier; a light source; a receiving chamber in or on the carrier wherein the receiving chamber is configured to receive an optical element; the optical element received in the receiving chamber; a plurality of actuators; and a waveguide arranged to receive light transmitted from the light source through the optical element. At least one of the receiving chamber and the actuators is arranged and configured to adjust the position of the optical element in the receiving chamber in a first direction perpendicular to the main surface of the carrier and in a second direction in-plane with the main surface of the carrier.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 29, 2011
    Inventors: Qingxin Zhang, Chee Wei TAN, Yu DU, Guo Qiang Patrick Lo
  • Publication number: 20110180795
    Abstract: An electro-optic device is disclosed. The electro-optic device includes an insulating layer, a first semiconducting region disposed above the insulating layer and being doped with doping atoms of a first conductivity type, a second semiconducting region disposed above the insulating layer and being doped with doping atoms of a second conductivity type and an electro-optic active region disposed above the insulating layer and between the first semiconducting region and the second semiconducting region.
    Type: Application
    Filed: August 8, 2007
    Publication date: July 28, 2011
    Inventors: Guo-Qiang Patrick Lo, Kee-soon Darryl Wang, Wei-Yip Loh, Mingbin Yu, Junfeng Song
  • Publication number: 20110149285
    Abstract: An embodiment of the invention relates to an optical resonator. The optical resonator includes an input optical waveguide and a closed loop coupled to the input optical waveguide. The closed loop is adapted to receive light from the input optical waveguide, wherein the closed loop includes at least one hole formed within a portion of the closed loop.
    Type: Application
    Filed: May 29, 2008
    Publication date: June 23, 2011
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Xian Tong Chen, Shao Hua Tao, Guo-qiang Patrick Lo, Shi Yang Zhu