Patents by Inventor Patrick M. Haben

Patrick M. Haben has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170341028
    Abstract: Examples are disclosed that relate to an ultrafiltration system for quantum-dot (QD) purification. The ultrafiltration system comprises a pump having a low-pressure side and a high-pressure side, a size-exclusion membrane having a low-pressure side and a high-pressure side, and an inlet/outlet arrangement. An inlet arranged on the high-pressure side of the size-exclusion membrane is coupled fluidically to the high-pressure side of the pump. A product-enriched outlet is arranged on the high-pressure side of the size-exclusion membrane, fluidically downstream of the inlet. A product-depleted outlet is arranged on the low-pressure side of the size-exclusion membrane.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 30, 2017
    Inventors: Daniel Peterson, Patrick M. Haben, Thomas E. Novet
  • Publication number: 20160375495
    Abstract: A continuous flow reactor for the efficient synthesis of nanoparticles with a high degree of crystallinity, uniform particle size, and homogenous stoichiometry throughout the crystal is described. Disclosed embodiments include a flow reactor with an energy source for rapid nucleation of the procurors following by a separate heating source for growing the nucleates. Segmented flow may be provided to facilitate mixing and uniform energy absorption of the precursors, and post production quality testing in communication with a control system allow automatic real-time adjustment of the production parameters. The nucleation energy source can be monomodal, multimodal, or multivariable frequency microwave energy and tuned to allow different precursors to nucleate at substantially the same time thereby resulting in a substantially homogenous nanoparticle. A shell application system may also be provided to allow one or more shell layers to be formed onto each nanoparticle.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 29, 2016
    Applicant: Shoei Electronic Materials, Inc.
    Inventors: David M. Schut, Patrick M. Haben, Thomas E. Novet, Daniel A. Peterson, George M. Williams
  • Publication number: 20140264171
    Abstract: A continuous flow reactor for the efficient synthesis of nanoparticles with a high degree of crystallinity, uniform particle size, and homogenous stoichiometry throughout the crystal is described. Disclosed embodiments include a flow reactor with an energy source for rapid nucleation of the procurors following by a separate heating source for growing the nucleates. Segmented flow may be provided to facilitate mixing and uniform energy absorption of the precursors, and post production quality testing in communication with a control system allow automatic real-time adjustment of the production parameters. The nucleation energy source can be monomodal, multimodal, or multivariable frequency microwave energy and tuned to allow different precursors to nucleate at substantially the same time thereby resulting in a substantially homogenous nanoparticle. A shell application system may also be provided to allow one or more shell layers to be formed onto each nanoparticle.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Shoei Electronic Materials, Inc.
    Inventors: David M. Schut, Patrick M. Haben, Thomas E. Novet, Daniel A. Peterson, George M. Williams