Patents by Inventor Patrick M. Smith

Patrick M. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969578
    Abstract: Methods, devices and systems are disclosed for inter-app communications between software applications on a mobile communications device. In one aspect, a computer-readable medium on a mobile computing device comprising an inter-application communication data structure to facilitate transitioning and distributing data between software applications in a shared app group for an operating system of the mobile computing device includes a scheme field of the data structure providing a scheme id associated with a target software app to transition to from a source software app, wherein the scheme id is listed on a scheme list stored with the source software app; and a payload field of the data structure providing data and/or an identification where to access data in a shared file system accessible to the software applications in the shared app group, wherein the payload field is encrypted.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 30, 2024
    Assignee: Dexcom, Inc.
    Inventors: Gary A. Morris, Scott M. Belliveau, Esteban Cabrera, Jr., Rian Draeger, Laura J. Dunn, Timothy Joseph Goldsmith, Hari Hampapuram, Christopher Robert Hannemann, Apurv Ullas Kamath, Katherine Yerre Koehler, Patrick Wile McBride, Michael Robert Mensinger, Francis William Pascual, Philip Mansiel Pellouchoud, Nicholas Polytaridis, Philip Thomas Pupa, Anna Leigh Davis, Kevin Shoemaker, Brian Christopher Smith, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20240108710
    Abstract: The present invention relates generally to the prevention of pneumococcal disease. More specifically, the invention relates to a composition comprising pneumococcal conjugates and a stable nanoemulsion (SNE).
    Type: Application
    Filed: February 2, 2022
    Publication date: April 4, 2024
    Applicant: Merck Sharp & Dohme LLC
    Inventors: William J. Smith, Patrick L. Ahl, Randal J. Soukup, Julie M. Skinner
  • Publication number: 20240108711
    Abstract: The invention is related to multivalent immunogenic compositions comprising more than one S. pneumoniae polysaccharide protein conjugates, wherein each of the conjugates comprises a polysaccharide from an S. pneumoniae serotype conjugated to a carrier protein, wherein the serotypes of S. pneumoniae are as defined herein. Also provided are methods for inducing a protective immune response in a human patient comprising administering the multivalent immunogenic compositions of the invention to the patient. The multivalent immunogenic compositions are useful for providing protection against S. pneumoniae infection and diseases caused by S. pneumoniae. The compositions of the invention are also useful as part of treatment regimes that provide complementary protection for patients that have been vaccinated with a multivalent vaccine indicated for the prevention of pneumococcal disease.
    Type: Application
    Filed: November 9, 2023
    Publication date: April 4, 2024
    Applicant: Merck Sharp & Dohme LLC
    Inventors: William J. Smith, Patrick McHugh, Michael Albert Winters, Julie M. Skinner, Jian He, Luwy Musey, Chitrananda Abeygunawardana, Yadong Adam Cui, Michael J. Kosinski
  • Patent number: 11943207
    Abstract: Methods, systems, and use cases for one-touch inline cryptographic data security are discussed, including an edge computing device with a network communications circuitry (NCC), an enhanced DMA engine coupled to a memory device and including a cryptographic engine, and processing circuitry configured to perform a secure exchange with a second edge computing device to negotiate a shared symmetric encryption key, based on a request for data. An inline encryption command for communication to the enhanced DMA engine is generated. The inline encryption command includes a first address associated with a storage location storing the data, a second address associated with a memory location in the memory device, and the shared symmetric encryption key. The data is retrieved from the storage location using the first address, the data is encrypted using the shared symmetric encryption key, and the encrypted data is stored in the memory location using the second address.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Kshitij Arun Doshi, Uzair Qureshi, Lokpraveen Mosur, Patrick Fleming, Stephen Doyle, Brian Andrew Keating, Ned M. Smith
  • Publication number: 20240091442
    Abstract: Methods, devices and systems are disclosed for inter-app communications between software applications on a mobile communications device. In one aspect, a computer-readable medium on a mobile computing device comprising an inter-application communication data structure to facilitate transitioning and distributing data between software applications in a shared app group for an operating system of the mobile computing device includes a scheme field of the data structure providing a scheme id associated with a target software app to transition to from a source software app, wherein the scheme id is listed on a scheme list stored with the source software app; and a payload field of the data structure providing data and/or an identification where to access data in a shared file system accessible to the software applications in the shared app group, wherein the payload field is encrypted.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 21, 2024
    Inventors: Gary A. MORRIS, Scott M. BELLIVEAU, Esteban CABRERA, JR., Anna Leigh DAVIS, Rian W. DRAEGER, Laura J. DUNN, Timothy Joseph GOLDSMITH, Hari HAMPAPURAM, Christopher Robert HANNEMANN, Apurv Ullas KAMATH, Katherine Yerre KOEHLER, Patrick Wile MCBRIDE, Michael Robert MENSINGER, Francis William PASCUAL, Philip Mansiel PELLOUCHOUD, Nicholas POLYTARIDIS, Philip Thomas PUPA, Kevin SHOEMAKER, Brian Christopher SMITH, Benjamin Elrod WEST, Atiim Joseph WILEY
  • Patent number: 10105329
    Abstract: Disclosed herein are compositions and methods that are useful for inducing the development of regulatory T cells (Treg). Such compositions and methods are useful for treating inflammatory conditions and in particular inflammatory conditions affecting the gastrointestinal tract of a subject. In certain embodiments, the present inventions generally relate to short chain fatty acids and the discovery that such short chain fatty acids may be used to treat and/or prevent inflammatory conditions by enhancing the size and immune function of a subject's endogenous Treg population.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: October 23, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Wendy S. Garrett, Patrick M. Smith
  • Publication number: 20170340588
    Abstract: Disclosed herein are compositions and methods that are useful for inducing the development of regulatory T cells (Treg). Such compositions and methods are useful for treating inflammatory conditions and in particular inflammatory conditions affecting the gastrointestinal tract of a subject. In certain embodiments, the present inventions generally relate to short chain fatty acids and the discovery that such short chain fatty acids may be used to treat and/or prevent inflammatory conditions by enhancing the size and immune function of a subject's endogenous Treg population.
    Type: Application
    Filed: June 22, 2017
    Publication date: November 30, 2017
    Inventors: Wendy S. Garrett, Patrick M. Smith
  • Patent number: 9693977
    Abstract: Disclosed herein are compositions and methods that are useful for inducing the development of regulatory T cells (Treg). Such compositions and methods are useful for treating inflammatory conditions and in particular inflammatory conditions affecting the gastrointestinal tract of a subject. In certain embodiments, the present inventions generally relate to short chain fatty acids and the discovery that such short chain fatty acids may be used to treat and/or prevent inflammatory conditions by enhancing the size and immune function of a subject's endogenous Treg population.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 4, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Wendy S. Garrett, Patrick M. Smith
  • Patent number: 9406824
    Abstract: The present disclosure relates to a nanopillar tunneling photovoltaic (“NPTPV”), and method for fabricating it. The NPTPV device has a regular array of semiconductor pillar cores formed on a substrate having a conductive surface. Layers of high-k material are formed on the cores to provide an efficient tunneling layer for electrons (or holes) generated by incident photons in the cores. Transparent conductive collector layers are formed on the tunneling layer to collect the tunneled carriers. An optimized deposition process, various surface preparations, an interfacial layer between the pillars and the high-k tunnel layer, and optimized pre- and post-deposition annealing reduce the interface trap density and thus reduce recombination prior to tunneling. The absence of a junction also reduces core recombination, resulting in a high short-circuit current. Modifying the collector material and core doping tunes the open-circuit voltage. Such NPTPVs result in large-scale low-cost PVs.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 2, 2016
    Assignee: QUSWAMI, INC.
    Inventors: Arash Hazeghi, Patrick M. Smith
  • Publication number: 20160038447
    Abstract: Disclosed herein are compositions and methods that are useful for inducing the development of regulatory T cells (Treg). Such compositions and methods are useful for treating inflammatory conditions and in particular inflammatory conditions affecting the gastrointestinal tract of a subject. In certain embodiments, the present inventions generally relate to short chain fatty acids and the discovery that such short chain fatty acids may be used to treat and/or prevent inflammatory conditions by enhancing the size and immune function of a subject's endogenous Treg population.
    Type: Application
    Filed: March 17, 2014
    Publication date: February 11, 2016
    Applicant: President and Fellows of Harvard College
    Inventors: Wendy S. Garrett, Patrick M. Smith
  • Patent number: 7112846
    Abstract: Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: September 26, 2006
    Assignee: The Regents of the University of California
    Inventors: Jesse D. Wolfe, Steven D. Theiss, Paul G. Carey, Patrick M. Smith, Paul Wickboldt
  • Publication number: 20040016926
    Abstract: Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 29, 2004
    Applicant: The Regents of the University of California
    Inventors: Jesse D. Wolfe, Steven D. Theiss, Paul G. Carey, Patrick M. Smith, Paul Wickboldt
  • Patent number: 6680485
    Abstract: A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250° C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: January 20, 2004
    Assignee: The Regents of the University of California
    Inventors: Paul G. Carey, Patrick M. Smith, Thomas W. Sigmon, Randy C. Aceves
  • Patent number: 6649216
    Abstract: The present invention relates to a method of coating polymer film that includes the steps of extruding a cast sheet; stretching the sheet in a machine direction; applying a UV-curable coating to the sheet in-line; stretching the sheet in a transverse direction in a tenter; and exposing the coated sheet to UV radiation in-line.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: November 18, 2003
    Assignee: Mitsubishi Polyester Film, LLC
    Inventors: Steven J. Gust, Patrick M. Smith, Jan C. Westermeier
  • Patent number: 6642085
    Abstract: Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: November 4, 2003
    Assignee: The Regents of the University of California
    Inventors: Jesse D. Wolfe, Steven D. Theiss, Paul G. Carey, Patrick M. Smith, Paul Wickboldt
  • Patent number: 6436739
    Abstract: Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 &mgr;m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: August 20, 2002
    Assignee: The Regents of the University of California
    Inventors: Paul Wickboldt, Albert R. Ellingboe, Steven D. Theiss, Patrick M. Smith
  • Publication number: 20020110647
    Abstract: The present invention relates to a method of coating polymer film that includes the steps of extruding a cast sheet; stretching the sheet in a machine direction; applying a UV-curable coating to the sheet in-line; stretching the sheet in a transverse direction in a tenter; and exposing the coated sheet to UV radiation in-line.
    Type: Application
    Filed: September 5, 2001
    Publication date: August 15, 2002
    Inventors: Steven J Gust, Patrick M. Smith, Jan C. Westermeier
  • Patent number: 5994174
    Abstract: Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: November 30, 1999
    Assignee: The Regents of the University of California
    Inventors: Paul G. Carey, Patrick M. Smith
  • Patent number: 5918140
    Abstract: A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: June 29, 1999
    Assignee: The Regents of the University of California
    Inventors: Paul Wickboldt, Paul G. Carey, Patrick M. Smith, Albert R. Ellingboe
  • Patent number: RE39988
    Abstract: A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: January 1, 2008
    Assignee: The Regents of the University of California
    Inventors: Paul Wickboldt, Paul G. Carey, Patrick M. Smith, Albert R. Ellingboe