Patents by Inventor Patrick Maeda

Patrick Maeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7719022
    Abstract: Devices and methods for collecting and distributing light from a light emitting diode (LED) emitter onto a phosphor layer to produce substantially white light are provided. The devices may include a reflective cavity with a reflective material, surrounding the reflective cavity, with a reflective side of the reflective material facing towards the inside of the reflective cavity. Further, the devices may incorporate an LED on one end of the reflective cavity and a phosphor layer on another end. Additionally, the devices may use a gradient index (GRIN) rod lens to refract light produced from the LED onto a phosphor surface with an LED on one end of the GRIN rod lens and the phosphor layer on the other end.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: May 18, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Patrick Maeda
  • Publication number: 20090278146
    Abstract: Devices and methods for collecting and distributing light from a light emitting diode (LED) emitter onto a phosphor layer to produce substantially white light are provided. The devices may include a reflective cavity with a reflective material, surrounding the reflective cavity, with a reflective side of the reflective material facing towards the inside of the reflective cavity. Further, the devices may incorporate an LED on one end of the reflective cavity and a phosphor layer on another end. Additionally, the devices may use a gradient index (GRIN) rod lens to refract light produced from the LED onto a phosphor surface with an LED on one end of the GRIN rod lens and the phosphor layer on the other end.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 12, 2009
    Applicant: Palo Alto Research Center Incorporated
    Inventor: Patrick MAEDA
  • Publication number: 20080096298
    Abstract: A Vertical Cavity Surface Emitting Laser (VCSEL) assembly including a VCSEL structure having a light-emitting region located on its surface, a relatively wettable region of a surface modifier coating formed over the light emitting region, and a microlens formed on the relatively wettable region. A relatively non-wettable region of the surface modifier coating is formed around the light-emitting region (e.g., on the electrode surrounding the light-emitting region). The surface modifier coating is formed, for example, from one or more organothiols that change the surface energies of the light-emitting region and/or the electrode to facilitate self-assembly and self-registration of the microlens material. The microlens material is printed, microjetted, or dip coated onto the VCSEL structure such that the microlens material wets to the relatively wettable region, thereby forming a liquid bead that is reliably positioned over the light-emitting region. The liquid bead is then cured to form the microlens.
    Type: Application
    Filed: December 11, 2007
    Publication date: April 24, 2008
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Michael Chabinyc, Patrick Maeda, Christopher Chua
  • Publication number: 20080013877
    Abstract: An improved method of analyzing target analytes in a sample is described. The method is based on creating an approximately homogeneous distribution of light in an anti-resonant guided optical waveguide to improve light-target interaction in a target-containing medium. The light-target interaction can be monitored by many different means to determine characteristics of the target analyte.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 17, 2008
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Oliver Schmidt, Michael Bassler, Peter Kiesel, Patrick Maeda, Noble Johnson
  • Publication number: 20070251568
    Abstract: A concentrating solar collector that utilizes a solar collector optical system to concentrate solar light onto a PV cell (image plane), wherein the solar collector optical system includes an array of first optical elements that divide the solar light into separate beams, and a secondary optical system that integrates (superimposes) the separate beams in a defocused state at the image plane, thereby forming a uniform light distribution pattern on the PV cell. The secondary optical system is positioned at a distance from the aperture plane, whereby the rays of each separate beam leaving the secondary optical element are parallel. The image plane (PV cell) is located at the back focal point of the second image element, whereby all of the separate beams are superimposed on the PV cell in a defocused state. Optional intervening third optical elements are used to increase the acceptance angle.
    Type: Application
    Filed: April 26, 2006
    Publication date: November 1, 2007
    Applicant: Palo Alto Research Center Incorporated
    Inventor: Patrick Maeda
  • Publication number: 20070169806
    Abstract: Photovoltaic devices (i.e., solar cells) are formed using non-contact patterning apparatus (e.g., a laser-based patterning systems) to define contact openings through a passivation layer, and direct-write metallization apparatus (e.g., an inkjet-type printing or extrusion-type deposition apparatus) to deposit metallization into the contact openings and over the passivation surface. The metallization includes two portions: a contact (e.g., silicide-producing) material is deposited into the contact openings, then a highly conductive metal is deposited on the contact material and between the contact holes. The device wafers are transported between the patterning and metallization apparatus in hard tooled registration using a conveyor mechanism. Optional sensors are utilized to align the patterning and metallization apparatus to the contact openings. An extrusion-type apparatus is used to form grid lines having a high aspect central metal line that is supported on each side by a transparent material.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 26, 2007
    Applicant: Palo Alto Research Center Incorporated
    Inventors: David Fork, Patrick Maeda, Ana Arias, Douglas Curry
  • Publication number: 20070147189
    Abstract: An integrated circuit includes a photosensor array with subrange cells that photosense within respective subranges of an energy range. An optical signal and the array move relative to each other, and, for segments of their relative movement, sets of subrange cells photosense within subranges that are different. For example, a scanning device can cause relative scanning movement. The optical signal can be produced by illuminating a two-dimensional object. The photosensed quantities for a part of the optical signal can be used to produce spectral information for the part.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 28, 2007
    Inventors: Oliver Schmidt, Peter Kiesel, Noble Johnson, Patrick Maeda
  • Publication number: 20070146888
    Abstract: Light to be sensed is spreaded across an entry surface of a transmission structure with a laterally varying energy transmission function. For example, the light could be output from a stimulus-wavelength converter, provided through an optical fiber, or it could come from a point-like source or broad area source. Output photons from the transmission structure can be photosensed by photosensing components such as an array, position sensor, or array of position sensors. Wavelength information from the light can be obtained in response to the photosensing component. Spreading can be performed by air, gas, transparent material, or vacuum in a gap, by a region or other part of a lens, or by an optical fiber end surface. If the light comes from more than one source, a propagation component can both spread the light and also keep light from the sources separate.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 28, 2007
    Inventors: Oliver Schmidt, Peter Kiesel, Patrick Maeda
  • Publication number: 20070126010
    Abstract: A microlens structure is mounted directly onto the upper surface of a packaged VCSEL device and positioned to locate microlenses directly over corresponding VCSEL elements. The microlens structure includes a block-like pedestal having a lower surface that faces the upper surface of the VSCEL device. The microlenses are formed in a central region of the lower surface, and several legs (stand-offs) extend from peripheral edges of the lower surface. During assembly, the VCSEL device is positioned under the microlens structure such that each microlens is aligned over its corresponding VCSEL element, and then raised until the legs contact the upper surface of the VCSEL device. The legs serve to self-align the microlenses to the VCSEL device, and are sized to maintain an optimal distance between the microlenses and the VCSEL elements. The pedestal is attached to a carrier plate that is secured to an IC package housing the VCSEL device.
    Type: Application
    Filed: November 22, 2005
    Publication date: June 7, 2007
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Christopher Chua, Michel Rosa, Patrick Maeda, Eric Peeters
  • Publication number: 20070126849
    Abstract: A multiple beam scanning system for scanning light beams onto a photoreceptor of an image forming apparatus. A pre-polygon input and output telecentric optical subsystem includes a beam conditioning system that focuses the light beams in a cross-scan direction, collimates the beams in the scan direction, and individually focuses the beams on a polygonal mirror deflector, which reflects the beams along a first scan path. A post-polygon input and output telecentric optical subsystem redirects the scanned beams along a second scan path and through an output window onto the photoreceptor, wherein the post-polygon subsystem includes a positive cross-scan cylindrical first optical element, a negative cross-scan cylindrical second optical element, and a positive cross-scan cylindrical third optical element. In one embodiment, the three cylindrical optical elements are cylinder mirrors. In another embodiment, one or more of the optical elements are cylinder lenses.
    Type: Application
    Filed: December 7, 2005
    Publication date: June 7, 2007
    Applicant: Palo Alto Research Center Incorporated
    Inventor: Patrick Maeda
  • Publication number: 20060231133
    Abstract: A Cassegrain-type concentrating solar collector cell includes primary and secondary mirrors disposed on opposing convex and concave surfaces of a light-transparent (e.g., glass) optical element. Light enters an aperture surrounding the secondary mirror, and is reflected by the primary mirror toward the secondary mirror, which re-reflects the light onto a photovoltaic cell mounted on a central region surrounded by the convex surface. The primary and secondary mirrors are preferably formed as mirror films that are deposited or plated directly onto the optical element. A concentrating solar collector array includes a sheet-like optical panel including multiple optical elements arranged in rows. The photovoltaic cells are mounted directly onto the optical panel, and the primary mirrors of the individual collector cells include metal film segments that are coupled by the photovoltaic cells to facilitate transmission of the generated electrical energy.
    Type: Application
    Filed: April 19, 2005
    Publication date: October 19, 2006
    Applicant: Palo Alto Research Center Incorporated
    Inventors: David Fork, Patrick Maeda
  • Publication number: 20060131124
    Abstract: A Vertical Cavity Surface Emitting Laser (VCSEL) assembly including a VCSEL structure having a light-emitting region located on its surface, a relatively wettable region of a surface modifier coating formed over the light emitting region, and a microlens formed on the relatively wettable region. A relatively non-wettable region of the surface modifier coating is formed around the light-emitting region (e.g., on the electrode surrounding the light-emitting region). The surface modifier coating is formed, for example, from one or more organothiols that change the surface energies of the light-emitting region and/or the electrode to facilitate self-assembly and self-registration of the microlens material. The microlens material is printed, microjetted, or dip coated onto the VCSEL structure such that the microlens material wets to the relatively wettable region, thereby forming a liquid bead that is reliably positioned over the light-emitting region. The liquid bead is then cured to form the microlens.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Michael Chabinyc, Patrick Maeda, Christopher Chua
  • Publication number: 20060133443
    Abstract: Lasers, such as in laser structures, can include two or more semiconductor structures that are substantially identical or that include the same semiconductor material and have substantially the same geometry, such as in closely spaced dual-spot two-beam or quad-spot four-beam lasers. The lasers can also include differently structured current flow or contact structures or different wavelength control structures. For example, current flow or contact structures can be differently structured to prevent or otherwise affect phase locking, such as by causing different threshold currents and different operating temperatures.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Inventors: Christopher Chua, Michael Kneissl, Patrick Maeda, Noble Johnson, Ross Bringans, John Northrup, David Biegelsen
  • Publication number: 20050151828
    Abstract: A micro-optic light emitting array has a plurality of vertical cavity surface emitting lasers focused with micro-optics. The present invention also provides a laser printbar assembly having of a plurality of such micro-optic light emitting arrays and a xerographic printing system including the laser printbar imager assembly which emits a plurality of laser light beams, a photoreceptor for receiving emitted light and for holding a toner image, and xerographic developer for exposing areas of the photoreceptor to emitted light from the printbar imager assembly. Also provided is a laser multifunction system having the laser printbar imager assembly of the invention including a plurality of micro-optic light emitting arrays as described above.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 14, 2005
    Inventor: Patrick Maeda