Patents by Inventor Patrick McPherson
Patrick McPherson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12132459Abstract: Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.Type: GrantFiled: August 9, 2023Date of Patent: October 29, 2024Assignee: Sonos, Inc.Inventors: Patrick McPherson, Aurelio Rafael Ramos
-
Publication number: 20240251213Abstract: An audio playback device comprises a microphone, a speaker, and a processor. The processor is arranged to output by the speaker first audio content and receive by the microphone an indication of the first audio content. A first acoustic response of a room in which the audio playback device is located is determined based on the received indication of first audio content. A mapping is applied to the first acoustic response to determine a second acoustic response. The second acoustic response is indicative of an approximated acoustic response of the room at a spatial location different from a spatial location of the microphone. The second audio content output by the speaker is adjusted based on the second response.Type: ApplicationFiled: January 26, 2024Publication date: July 25, 2024Inventors: Patrick McPherson, Shao-Fu Shih, Klaus Hartung
-
Patent number: 11889276Abstract: An audio playback device comprises a microphone, a speaker, and a processor. The processor is arranged to output by the speaker first audio content and receive by the microphone an indication of the first audio content. A first acoustic response of a room in which the audio playback device is located is determined based on the received indication of first audio content. A mapping is applied to the first acoustic response to determine a second acoustic response. The second acoustic response is indicative of an approximated acoustic response of the room at a spatial location different from a spatial location of the microphone. The second audio content output by the speaker is adjusted based on the second response.Type: GrantFiled: January 3, 2022Date of Patent: January 30, 2024Assignee: Sonos, Inc.Inventors: Patrick McPherson, Shao-Fu Shih, Klaus Hartung
-
Publication number: 20240004607Abstract: An example playback device is configured to receive a first stream of audio comprising source audio content to be played back by the playback device and record, via one or more microphones of the playback device, an audio signal output by the playback device based on the playback device playing the source audio content. The playback device is also configured to determine a transfer function between a frequency-domain representation of the first stream of audio and a frequency-domain representation of the recorded audio signal, and then determine an estimated frequency response of the playback device based on a difference between (i) the transfer function and (ii) a self-response of the playback device, where the self-response of the playback device is stored in a memory of the playback device. Based on the estimated frequency response, the playback device is configured to determine an acoustic calibration adjustment and implement the acoustic calibration adjustment.Type: ApplicationFiled: June 28, 2023Publication date: January 4, 2024Inventors: Shao-Fu Shih, Patrick McPherson
-
Publication number: 20230402982Abstract: Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.Type: ApplicationFiled: August 9, 2023Publication date: December 14, 2023Inventors: Patrick McPherson, Aurelio Rafael Ramos
-
Patent number: 11728780Abstract: Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.Type: GrantFiled: June 17, 2022Date of Patent: August 15, 2023Assignee: Sonos, Inc.Inventors: Patrick McPherson, Aurelio Rafael Ramos
-
Patent number: 11698770Abstract: An example playback device is configured to receive a first stream of audio comprising source audio content to be played back by the playback device and record, via one or more microphones of the playback device, an audio signal output by the playback device based on the playback device playing the source audio content. The playback device is also configured to determine a transfer function between a frequency-domain representation of the first stream of audio and a frequency-domain representation of the recorded audio signal, and then determine an estimated frequency response of the playback device based on a difference between (i) the transfer function and (ii) a self-response of the playback device, where the self-response of the playback device is stored in a memory of the playback device. Based on the estimated frequency response, the playback device is configured to determine an acoustic calibration adjustment and implement the acoustic calibration adjustment.Type: GrantFiled: November 30, 2020Date of Patent: July 11, 2023Assignee: Sonos, Inc.Inventors: Shao-Fu Shih, Patrick McPherson
-
Publication number: 20220393658Abstract: Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.Type: ApplicationFiled: June 17, 2022Publication date: December 8, 2022Inventors: Patrick McPherson, Aurelio Rafael Ramos
-
Publication number: 20220264241Abstract: An audio playback device comprises a microphone, a speaker, and a processor. The processor is arranged to output by the speaker first audio content and receive by the microphone an indication of the first audio content. A first acoustic response of a room in which the audio playback device is located is determined based on the received indication of first audio content. A mapping is applied to the first acoustic response to determine a second acoustic response. The second acoustic response is indicative of an approximated acoustic response of the room at a spatial location different from a spatial location of the microphone. The second audio content output by the speaker is adjusted based on the second response.Type: ApplicationFiled: January 3, 2022Publication date: August 18, 2022Inventors: Patrick McPherson, Shao-Fu Shih, Klaus Hartung
-
Patent number: 11374547Abstract: Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.Type: GrantFiled: July 2, 2020Date of Patent: June 28, 2022Assignee: Sonos, Inc.Inventors: Patrick McPherson, Aurelio Rafael Ramos
-
Patent number: 11218827Abstract: An audio playback device comprises a microphone, a speaker, and a processor. The processor is arranged to output by the speaker first audio content and receive by the microphone an indication of the first audio content. A first acoustic response of a room in which the audio playback device is located is determined based on the received indication of first audio content. A mapping is applied to the first acoustic response to determine a second acoustic response. The second acoustic response is indicative of an approximated acoustic response of the room at a spatial location different from a spatial location of the microphone. The second audio content output by the speaker is adjusted based on the second response.Type: GrantFiled: August 17, 2020Date of Patent: January 4, 2022Assignee: Sonos, Inc.Inventors: Patrick McPherson, Shao-Fu Shih, Klaus Hartung
-
Patent number: 11167515Abstract: A system and method for fabricating large composite fuselages or other vehicle structures, in which the composite structure is fabricated and cured as on a tool, segmented and removed from the tool without disassembling the tool, and then reassembled off the tool to reform the large structure. The tool includes mandrel segments attached to a substructure. The attachments may be moveable to accommodate differential expansion and contraction during curing, and the tool may be rotatable to facilitate access. A composite material of resin and synthetic fibers is applied over the mandrel segments to fabricate the structure on the tool. Caul plates are secured over the composite material, and the composite material is cured on the tool. The resulting structure is cut into part segments which are then removed from the tool, and the part segments are joined to reassemble the large composite structure off the tool.Type: GrantFiled: February 6, 2020Date of Patent: November 9, 2021Assignee: Spirit AeroSystems, Inc.Inventors: Michael Arthur Champa, John Patrick McPherson, Dennis Ray Malone
-
Patent number: 11167508Abstract: A system and method for fabricating large composite fuselages or other vehicle structures, in which the composite structure is fabricated and cured as on a tool, segmented and removed from the tool without disassembling the tool, and then reassembled off the tool to reform the large structure. The tool includes mandrel segments attached to a substructure. The attachments may be moveable to accommodate differential expansion and contraction during curing, and the tool may be rotatable to facilitate access. A composite material of resin and synthetic fibers is applied over the mandrel segments to fabricate the structure on the tool. Caul plates are secured over the composite material, and the composite material is cured on the tool. The resulting structure is cut into part segments which are then removed from the tool, and the part segments are joined to reassemble the large composite structure off the tool.Type: GrantFiled: July 30, 2019Date of Patent: November 9, 2021Assignee: Spirit AeroSystems, Inc.Inventors: Michael Arthur Champa, John Patrick McPherson, Blaise Francis Bergmann, James Edward Westerman, Brian Charles Clapp, Aaron Rae Heitmann
-
Publication number: 20210141593Abstract: An example playback device is configured to receive a first stream of audio comprising source audio content to be played back by the playback device and record, via one or more microphones of the playback device, an audio signal output by the playback device based on the playback device playing the source audio content. The playback device is also configured to determine a transfer function between a frequency-domain representation of the first stream of audio and a frequency-domain representation of the recorded audio signal, and then determine an estimated frequency response of the playback device based on a difference between (i) the transfer function and (ii) a self-response of the playback device, where the self-response of the playback device is stored in a memory of the playback device. Based on the estimated frequency response, the playback device is configured to determine an acoustic calibration adjustment and implement the acoustic calibration adjustment.Type: ApplicationFiled: November 30, 2020Publication date: May 13, 2021Inventors: Shao-Fu Shih, Patrick McPherson
-
Publication number: 20210050835Abstract: Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.Type: ApplicationFiled: July 2, 2020Publication date: February 18, 2021Inventors: Patrick McPherson, Aurelio Rafael Ramos
-
Publication number: 20210031467Abstract: A system and method for fabricating large composite fuselages or other vehicle structures, in which the composite structure is fabricated and cured as on a tool, segmented and removed from the tool without disassembling the tool, and then reassembled off the tool to reform the large structure. The tool includes mandrel segments attached to a substructure. The attachments may be moveable to accommodate differential expansion and contraction during curing, and the tool may be rotatable to facilitate access. A composite material of resin and synthetic fibers is applied over the mandrel segments to fabricate the structure on the tool. Caul plates are secured over the composite material, and the composite material is cured on the tool. The resulting structure is cut into part segments which are then removed from the tool, and the part segments are joined to reassemble the large composite structure off the tool.Type: ApplicationFiled: July 30, 2019Publication date: February 4, 2021Applicant: Spirit AeroSystems, Inc.Inventors: Michael Arthur Champa, John Patrick McPherson, Blaise Francis Bergmann, James Edward Westerman, Brian Charles Clapp, Aaron Rae Heitmann
-
Publication number: 20210031475Abstract: A system and method for fabricating large composite fuselages or other vehicle structures, in which the composite structure is fabricated and cured as on a tool, segmented and removed from the tool without disassembling the tool, and then reassembled off the tool to reform the large structure. The tool includes mandrel segments attached to a substructure. The attachments may be moveable to accommodate differential expansion and contraction during curing, and the tool may be rotatable to facilitate access. A composite material of resin and synthetic fibers is applied over the mandrel segments to fabricate the structure on the tool. Caul plates are secured over the composite material, and the composite material is cured on the tool. The resulting structure is cut into part segments which are then removed from the tool, and the part segments are joined to reassemble the large composite structure off the tool.Type: ApplicationFiled: February 6, 2020Publication date: February 4, 2021Applicant: SPIRIT AEROSYSTEMS, INC.Inventors: Michael Arthur Champa, John Patrick McPherson, Dennis Ray Malone
-
Publication number: 20200382888Abstract: An audio playback device comprises a microphone, a speaker, and a processor. The processor is arranged to output by the speaker first audio content and receive by the microphone an indication of the first audio content. A first acoustic response of a room in which the audio playback device is located is determined based on the received indication of first audio content. A mapping is applied to the first acoustic response to determine a second acoustic response. The second acoustic response is indicative of an approximated acoustic response of the room at a spatial location different from a spatial location of the microphone. The second audio content output by the speaker is adjusted based on the second response.Type: ApplicationFiled: August 17, 2020Publication date: December 3, 2020Inventors: Patrick McPherson, Shao-Fu Shih, Klaus Hartung
-
Patent number: 10853027Abstract: An example playback device is configured to receive a first stream of audio comprising source audio content to be played back by the playback device and record, via one or more microphones of the playback device, an audio signal output by the playback device based on the playback device playing the source audio content. The playback device is also configured to determine a transfer function between a frequency-domain representation of the first stream of audio and a frequency-domain representation of the recorded audio signal, and then determine an estimated frequency response of the playback device based on a difference between (i) the transfer function and (ii) a self-response of the playback device, where the self-response of the playback device is stored in a memory of the playback device. Based on the estimated frequency response, the playback device is configured to determine an acoustic calibration adjustment and implement the acoustic calibration adjustment.Type: GrantFiled: October 28, 2019Date of Patent: December 1, 2020Assignee: Sonos, Inc.Inventors: Shao-Fu Shih, Patrick McPherson
-
Patent number: 10750304Abstract: An audio playback device comprises a microphone, a speaker, and a processor. The processor is arranged to output by the speaker first audio content and receive by the microphone an indication of the first audio content. A first acoustic response of a room in which the audio playback device is located is determined based on the received indication of first audio content. A mapping is applied to the first acoustic response to determine a second acoustic response. The second acoustic response is indicative of an approximated acoustic response of the room at a spatial location different from a spatial location of the microphone. The second audio content output by the speaker is adjusted based on the second response.Type: GrantFiled: May 20, 2019Date of Patent: August 18, 2020Assignee: Sonos, Inc.Inventors: Patrick McPherson, Shao-Fu Shih, Klaus Hartung