Patents by Inventor Patrick O'Shea

Patrick O'Shea has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200039316
    Abstract: In one embodiment, certain aspects of forces at a structural interface applied by one actuator are mitigated by a secondary actuator that applies a secondary force. In some embodiments the secondary actuator applies a static force. In yet another embodiment, an actuator is used to apply a force on a wheel assembly of a vehicle to detect and/or ameliorate the effect of certain tire incongruities.
    Type: Application
    Filed: April 5, 2018
    Publication date: February 6, 2020
    Applicant: ClearMotion, Inc.
    Inventors: Joseph Thomas Belter, Clive Tucker, Jack A. Ekchian, Colin Patrick O'Shea, Marco Giovanardi, David Ta-wei Hsu
  • Publication number: 20190368877
    Abstract: Local terrain feature location data is obtained from a local sensor device at a user location without a prior-known global position. The local terrain feature location data characterizes relative distances and directions to a plurality of local terrain features nearest to the user location. Global terrain feature location data stored in at least one hardware memory device is accessed. The global terrain feature location data characterizes relative distances and directions between a plurality of distinctive terrain features located in a defined terrain region in terms of absolute global location coordinates. The local terrain feature location data is compared to the global terrain feature location data to develop multiple pattern matching hypotheses, wherein each pattern matching hypothesis characterizes a likelihood of a subset of the local terrain features matching a subset the global terrain features. Global location coordinates for the user location is then determined from the pattern matching hypotheses.
    Type: Application
    Filed: March 4, 2019
    Publication date: December 5, 2019
    Inventors: Patrick O'Shea, William W. Whitacre, Christopher C. Yu, Juha-Pekka J. Laine, Charles A. McPherson
  • Patent number: 10350957
    Abstract: A method of on-demand energy delivery to an active suspension system is disclosed. The suspension system includes an actuator body, a hydraulic pump, an electric motor, a plurality of sensors, an energy storage facility, and a controller. The method includes disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: July 16, 2019
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Clive Tucker, Jonathan R. Leehey, Colin Patrick O'Shea, Johannes Schneider, Vladimir Gorelik, Richard Anthony Zuckerman, Patrick W. Neil, Tyson David Sawyer, Ross J. Wendell
  • Publication number: 20190162179
    Abstract: Presented herein are systems and methods for attenuating flow ripple generated by a hydraulic pump. In certain aspects, a method and system for operating a hydraulic positive displacement pump according to a stabilized command profile are disclosed, such that flow ripple generated by operation of the pump according to the stabilized command profile is attenuated as compared to operation of the pump according to a corresponding nominal command profile. In other aspects, a pressure-balanced active buffer is disclosed that allow for at least partially cancelling flow ripple in a hydraulic circuit comprising a pump. In another aspect, a method for generating ripple maps for a pump is disclosed. Such ripple maps may be used, for example, to determine the stabilized command profile used to operate the pump, or may be used by the pressure-balanced active buffer to counteract ripple in the hydraulic circuit.
    Type: Application
    Filed: April 18, 2017
    Publication date: May 30, 2019
    Applicant: ClearMotion, Inc.
    Inventors: Colin Patrick O'Shea, Clive Tucker, Brian Alexander Selden
  • Publication number: 20190001782
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 3, 2019
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 10160276
    Abstract: A method and system for measuring rotor position or velocity in an electric motor disposed in hydraulic fluid. The system comprises a contactless position sensor that measures electric motor rotor via magnetic, optical, or other means through a diaphragm that is permeable to the sensing means but impervious to the hydraulic fluid. An electronic sensor is positioned outside the operating fluid, whereas the motor is located in the fluid volume.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: December 25, 2018
    Assignee: ClearMotion, Inc.
    Inventors: Clive Tucker, Vladimir Gorelik, Jonathan R. Leehey, Robert Driscoll, Colin Patrick O'Shea, Johannes Schneider, Ross J. Wendell, Tyson David Sawyer
  • Publication number: 20180297432
    Abstract: Various embodiments related to hydraulic actuators and active suspension systems as well as their methods of use are described.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 18, 2018
    Applicant: ClearMotion, Inc.
    Inventors: Marco Giovanardi, Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, Colin Patrick O'Shea, Vladimir Gorelik, Tyson David Sawyer, Jonathan R. Leehey, Johannes Schneider, Robert Driscoll, Patrick W. Neil, Shakeel Avadhany
  • Patent number: 10040330
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: August 7, 2018
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 10029534
    Abstract: Various embodiments related to hydraulic actuators and active suspension systems as well as their methods of use are described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 24, 2018
    Assignee: ClearMotion, Inc.
    Inventors: Marco Giovanardi, Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, Colin Patrick O'Shea, Vladimir Gorelik, Tyson David Sawyer, Jonathan R. Leehey, Johannes Schneider, Robert Driscoll, Patrick W. Neil, Shakeel Avadhany
  • Publication number: 20180134106
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Application
    Filed: February 14, 2017
    Publication date: May 17, 2018
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 9809078
    Abstract: A multi-path fluid flow control valve for a shock absorber that restricts fluid into a first path while opening fluid flow to a second path when a given fluid flow velocity is reached. Exemplary configurations of this diverter valve are disclosed such as a spring loaded disc valve with face sealing lands, and a spool valve with diametric sealing lands. Applications include active suspension dampers in order to limit maximum RPM into a hydraulic motor. For such a system, in one mode the diverter valve allows fluid to move unrestricted into the hydraulic motor. When fluid velocity reaches a tunable set point, in a second mode the diverter valve restricts flow into the hydraulic motor and bypasses it shuttling fluid into the opposite side of the damper. In some cases progressive damping valves are utilized in series or parallel to smooth damping characteristics during, before, and after transitions.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 7, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Clive Tucker, Johannes Schneider, Colin Patrick O'Shea, Marco Giovanardi, Richard Anthony Zuckerman, Patrick W. Neil
  • Publication number: 20170225534
    Abstract: A method of on-demand energy delivery to an active suspension system is disclosed. The suspension system includes an actuator body, a hydraulic pump, an electric motor, a plurality of sensors, an energy storage facility, and a controller. The method includes disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 10, 2017
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Clive Tucker, Jonathan R. Leehey, Colin Patrick O'Shea, Johannes Schneider, Vladimir Gorelik, Richard Anthony Zuckerman, Patrick W. Neil, Tyson David Sawyer, Ross J. Wendell
  • Patent number: 9702349
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: July 11, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 9702424
    Abstract: Hydraulic bump stops and bi-directional diverter valves may be used to protect hydraulic systems, including, for example in one embodiment, the hydraulic actuators of an active suspension system, from damage due to operation outside the normal operating range of the system. In some embodiments, a hydraulic bump stop may be used to slow down the motion of a piston at the extremes of the compression and/or extension strokes of an actuator. In another embodiment, a diverter valve may be used to protect a hydraulic motor/pump in a hydraulic system from an over-speed condition. When the piston in an active suspension system actuator moves at a speed in excess of a threshold value, one or more diverter valves may be used to divert flow away from the hydraulic motor/pump. In some embodiments, a diverter valve may be a dual or single spool bi-directional diverter valve.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: July 11, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Richard Anthony Zuckerman, Clive Tucker, Colin Patrick O'Shea, Jack A. Ekchian
  • Publication number: 20170182859
    Abstract: A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 29, 2017
    Applicant: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Shakeel Avadhany, Matthew D. Cole, Robert Driscoll, John Giarratana, Marco Giovanardi, Vladimir Gorelik, Jonathan R. Leehey, William G. Near, Patrick W. Neil, Colin Patrick O'Shea, Tyson David Sawyer, Johannes Schneider, Clive Tucker, Ross J. Wendell, Richard Anthony Zuckerman
  • Patent number: 9676244
    Abstract: Various embodiments related to hydraulic actuators and active suspension systems as well as their methods of use are described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 13, 2017
    Inventors: Marco Giovanardi, Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, John Giarratana, Richard Anthony Zuckerman, Colin Patrick O'Shea, Vladimir Gorelik, Tyson David Sawyer, Jonathan R. Leehey, Johannes Schneider, Robert Driscoll, Patrick W. Neil
  • Patent number: 9597940
    Abstract: A method of on-demand energy delivery to an active suspension system is disclosed. The suspension system includes an actuator body, a hydraulic pump, an electric motor, a plurality of sensors, an energy storage facility, and a controller. The method includes disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: March 21, 2017
    Assignee: ClearMotion, Inc.
    Inventors: Zackary Martin Anderson, Marco Giovanardi, Clive Tucker, Jonathan R. Leehey, Colin Patrick O'Shea, Johannes Schneider, Vladimir Gorelik, Richard Anthony Zuckerman, Patrick W. Neil, Tyson David Sawyer, Ross J. Wendell
  • Patent number: 9550404
    Abstract: Various embodiments related to hydraulic actuators and active suspension systems as well as their methods of use are described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 24, 2017
    Assignee: Levant Power Corporation
    Inventors: Marco Giovanardi, Clive Tucker, Ross J. Wendell, Zackary Martin Anderson, Colin Patrick O'Shea, Vladimir Gorelik, Tyson David Sawyer, Jonathan R. Leehey, Johannes Schneider, Robert Driscoll, Patrick W. Neil, Shakeel Avadhany
  • Publication number: 20160171090
    Abstract: Systems and methods are presented herein which utilize a database storing for each of a plurality of objects, object-keyword relationship information directly or indirectly relating the object to one or more keywords in order to determine, for at least a first keyword in the database, one or more related keywords. For example, the one or more related keywords may be determined based on first determining one or more objects related to the at least a first keyword based on the object-keyword relationship information for the at least at least a first keyword and then determining the one or more related keywords based the object-keyword relationship information for one or more objects related to the at least a first keyword.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Applicant: University of Connecticut
    Inventors: Daniel Schwartz, Joseph Patrick O'Shea
  • Publication number: 20160097406
    Abstract: Hydraulic bump stops and bi-directional diverter valves may be used to protect hydraulic systems, including, for example in one embodiment, the hydraulic actuators of an active suspension system, from damage due to operation outside the normal operating range of the system. In some embodiments, a hydraulic bump stop may be used to slow down the motion of a piston at the extremes of the compression and/or extension strokes of an actuator. In another embodiment, a diverter valve may be used to protect a hydraulic motor/pump in a hydraulic system from an over-speed condition. When the piston in an active suspension system actuator moves at a speed in excess of a threshold value, one or more diverter valves may be used to divert flow away from the hydraulic motor/pump. In some embodiments, a diverter valve may be a dual or single spool bi-directional diverter valve.
    Type: Application
    Filed: October 6, 2015
    Publication date: April 7, 2016
    Applicant: Levant Power Corporation
    Inventors: Richard Anthony Zuckerman, Clive Tucker, Colin Patrick O'Shea, Jack A. Ekchian