Patents by Inventor Patrick Paradis

Patrick Paradis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11029293
    Abstract: Methods and systems are for determining the concentration of a chemical species in an analyte solution. At least one train of segments are injected into a microfluidic channel having a first end and a second end, each train of segments having segments of analyte solution and segments of sensing solution which are immiscible with the segments of analyte solution. The train of segments is circulated from the first end to the second end of the microfluidic channel such that a reversible chemical exchange is established between the chemical species of each segment of analyte solution and a chemical indicator of the at least one contacting segment of sensing solution. The response of the chemical indicator is measured at the second end of the microfluidic channel and the concentration of the chemical species in the analyte solution is determined based on the response.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: June 8, 2021
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Serge Caron, Sébastien Dubus, Christophe Rivière, Simon Turbide, Patrick Paradis
  • Patent number: 10386575
    Abstract: An optical assembly generally having a substrate; a photonic-integrated circuit (PIC) mounted on the substrate, the PIC having a plurality of optical ports; a first structure having a bottom surface connected to the substrate, and a first planar surface extending perpendicularly to the substrate; a second structure having a second planar surface being connected to the first planar surface of the first structure via an adhesive, and a support surface; and a waveguide array having a support surface being connected to the support surface of the second structure, the waveguide array having a plurality of waveguides each defining an optical path, with the optical paths lying in a waveguide plane, the waveguide plane being perpendicular to the first and second planar surfaces, the optical paths being maintained in optical alignment with corresponding ones of the optical ports via the adhered first and second planar surfaces.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: August 20, 2019
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Patrice Côté, Patrick Paradis, Marc Lévesque, Jacques Régnier, Alex Paquet
  • Patent number: 10162107
    Abstract: A multicore optical fiber includes a cladding and multiple cores disposed in the cladding. Each core has a light-guiding path and follows a helical trajectory about a fiber axis. The multicore fiber also includes a set of discrete lateral coupling zones, which are longitudinally distributed and azimuthally aligned with respect to the fiber axis. Each lateral coupling zone forms an optical coupling path, which enables at least one of lateral in-coupling and out-coupling of light between a corresponding one of the cores and an exterior of the multicore fiber. An optical probing system for light delivery to and/or light collection from a probed region includes a multicore optical fiber to enable coupling of guided light out of the cores for delivery to the probed region and/or collection of light from the probed region for coupling into one of the cores.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 25, 2018
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Claude Paré, Patrick Paradis, Chiara Meneghini, Antoine Proulx
  • Publication number: 20180231712
    Abstract: A multicore optical fiber includes a cladding and multiple cores disposed in the cladding. Each core has a light-guiding path and follows a helical trajectory about a fiber axis. The multicore fiber also includes a set of discrete lateral coupling zones, which are longitudinally distributed and azimuthally aligned with respect to the fiber axis. Each lateral coupling zone forms an optical coupling path, which enables at least one of lateral in-coupling and out-coupling of light between a corresponding one of the cores and an exterior of the multicore fiber. An optical probing system for light delivery to and/or light collection from a probed region includes a multicore optical fiber to enable coupling of guided light out of the cores for delivery to the probed region and/or collection of light from the probed region for coupling into one of the cores.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 16, 2018
    Inventors: Claude PARÉ, Patrick PARADIS, Chiara MENEGHINI, Antoine PROULX
  • Publication number: 20180106772
    Abstract: Methods and systems are for determining the concentration of a chemical species in an analyte solution. At least one train of segments are injected into a microfluidic channel having a first end and a second end, each train of segments having segments of analyte solution and segments of sensing solution which are immiscible with the segments of analyte solution. The train of segments is circulated from the first end to the second end of the microfluidic channel such that a reversible chemical exchange is established between the chemical species of each segment of analyte solution and a chemical indicator of the at least one contacting segment of sensing solution. The response of the chemical indicator is measured at the second end of the microfluidic channel and the concentration of the chemical species in the analyte solution is determined based on the response.
    Type: Application
    Filed: October 18, 2016
    Publication date: April 19, 2018
    Inventors: Serge CARON, Sébastien DUBUS, Christophe RIVIÈRE, Simon TURBIDE, Patrick PARADIS
  • Publication number: 20170285264
    Abstract: An optical assembly generally having a substrate; a photonic-integrated circuit (PIC) mounted on the substrate, the PIC having a plurality of optical ports; a first structure having a bottom surface connected to the substrate, and a first planar surface extending perpendicularly to the substrate; a second structure having a second planar surface being connected to the first planar surface of the first structure via an adhesive, and a support surface; and a waveguide array having a support surface being connected to the support surface of the second structure, the waveguide array having a plurality of waveguides each defining an optical path, with the optical paths lying in a waveguide plane, the waveguide plane being perpendicular to the first and second planar surfaces, the optical paths being maintained in optical alignment with corresponding ones of the optical ports via the adhered first and second planar surfaces.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 5, 2017
    Inventors: Patrice CÔTÉ, Patrick PARADIS, Marc LÉVESQUE, Jacques RÉGNIER, Alex PAQUET
  • Publication number: 20120039357
    Abstract: A fiber-optic temperature sensor assembly comprises a cap with an inner cavity. A sensor substance is received loosely in the inner cavity of the cap, the sensor substance having light-emitting properties adapted to change with specific temperature variations. An optical fiber has a first end received in the inner cavity of the cap and fusion spliced thereto, and a second end of the optical fiber being adapted to be connected to a processing unit for transmitting light signals from the sensor substance to the processing unit when the fiber-optic temperature sensor assembly is subjected to specific temperatures. A method for manufacturing the fiber-optic temperature sensor assembly is defined.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 16, 2012
    Inventors: Marc LEVESQUE, Patrick Paradis
  • Patent number: 7317849
    Abstract: An optical fiber sensor for detecting curvature of a body/structure comprises a cladding having an outer periphery. A central core receives and transmits light. The central core has Bragg gratings and is positioned in neutral planes of the cladding. Peripheral cores receive and transmit light. The peripheral cores have Bragg gratings and are peripherally positioned in the cladding with respect to the neutral planes. A connection configuration is provided in the outer periphery of the cladding to attach the optical fiber sensor to a body/structure such that the central core and the peripheral cores are in a predetermined orientation with respect to the body/structure to measure curvature of the body/structure.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: January 8, 2008
    Assignee: Institut National D'Optique
    Inventors: Chiara Meneghini, Sylvain Thériault, Patrick Paradis
  • Publication number: 20070297712
    Abstract: An optical fiber sensor for detecting curvature of a body/structure comprises a cladding having an outer periphery. A central core receives and transmits light. The central core has Bragg gratings and is positioned in neutral planes of the cladding. Peripheral cores receive and transmit light. The peripheral cores have Bragg gratings and are peripherally positioned in the cladding with respect to the neutral planes. A connection configuration is provided in the outer periphery of the cladding to attach the optical fiber sensor to a body/structure such that the central core and the peripheral cores are in a predetermined orientation with respect to the body/structure to measure curvature of the body/structure.
    Type: Application
    Filed: June 8, 2006
    Publication date: December 27, 2007
    Inventors: Chiara Meneghini, Sylvain Theriault, Patrick Paradis