Patents by Inventor Patrick Philipp HELFENSTEIN

Patrick Philipp HELFENSTEIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240152060
    Abstract: A method and system for predicting process information (e.g., phase data) using a given input (e.g., intensity) to a parameterized model are described. A latent space of a given input is determined based on dimensional data in a latent space of the parameterized model for a given input to the parameterized model. Further, an optimum latent space is determined by constraining the latent space with prior information (e.g., wavelength) that enables converging to a solution that causes more accurate predictions of the process information. The optimum latent space is used to predict the process information. The given input may be a measured amplitude (e.g., intensity) associated with the complex electric field image. The predicted process information can be complex electric field image having amplitude data and phase data. The parameterized model comprises variational encoder-decoder architecture.
    Type: Application
    Filed: February 17, 2022
    Publication date: May 9, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Patrick Philipp HELFENSTEIN, Scott Anderson MIDDLEBROOKS, Maxim PISARENCO, Markus Gerardus Martinus Maria VAN KRAAIJ, Alexander Prasetya KONIJNENBERG
  • Publication number: 20230004096
    Abstract: A method and system for predicting complex electric field images with a parameterized model are described. A latent space representation of a complex electric field image is determined based on dimensional data in a latent space of the parameterized model for a given input to the parameterized model. The given input may be a measured amplitude (e.g., intensity) associated with the complex electric field image. The complex electric field image is predicted based on the latent space representation of the complex electric field image. The predicted complex electric field image includes an amplitude and a phase. The parameterized model comprises encoder-decoder architecture. In some embodiments, determining the latent space representation of the electric field image comprises minimizing a function constrained by a set of electric field images that could be predicted by the parameterized model based on the dimensional data in the latent space and the given input.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 5, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Scott Anderson MIDDLEBROOKS, Patrick WARNAAR, Patrick Philipp HELFENSTEIN, Alexander Prasetya KONIJNENBERG, Maxim PISARENCO, Markus Gerardus Martinus Maria VAN KRAAIJ