Patents by Inventor Patrick Purdon

Patrick Purdon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10716485
    Abstract: A method for non-invasively resolving electrophysiological activity in sub-cortical structures located deep in the brain by comparing amplitude-insensitive M/EEG field patterns arising from activity in subcortical and cortical sources under physiologically relevant sparse constraints is disclosed. The method includes a sparse inverse solution for M/EEG subcortical source modeling. Specifically, the method employs a subspace-pursuit algorithm rooted in compressive sampling theory, performs a hierarchical search for sparse subcortical and cortical sources underlying the measurement, and estimates millisecond-scale currents in these sources to explain the data. The method can be used to recover thalamic and brainstem contributions to non-invasive M/EEG data, and to enable non-invasive study of fast timescale dynamical and network phenomena involving widespread regions across the human brain.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: July 21, 2020
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Pavitra Krishnaswamy, Patrick Purdon, Gabriel Obregon-Henao, Matti Hamalainen, Behtash Babadi
  • Publication number: 20170332933
    Abstract: A method for non-invasively resolving electrophysiological activity in sub-cortical structures located deep in the brain by comparing amplitude-insensitive M/EEG field patterns arising from activity in subcortical and cortical sources under physiologically relevant sparse constraints is disclosed. The method includes a sparse inverse solution for M/EEG subcortical source modeling. Specifically, the method employs a subspace-pursuit algorithm rooted in compressive sampling theory, performs a hierarchical search for sparse subcortical and cortical sources underlying the measurement, and estimates millisecond-scale currents in these sources to explain the data. The method can be used to recover thalamic and brainstem contributions to non-invasive M/EEG data, and to enable non-invasive study of fast timescale dynamical and network phenomena involving widespread regions across the human brain.
    Type: Application
    Filed: November 9, 2015
    Publication date: November 23, 2017
    Inventors: Pavitra Krishnaswamy, Patrick Purdon, Gabriel Obregon-Henao, Matti Hamalainen, Behtash Babadi