Patents by Inventor Patrick Rode

Patrick Rode has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10903119
    Abstract: A semiconductor chip, a method for producing a semiconductor chip and an apparatus having a plurality of semiconductor chips are disclosed. In an embodiment a chip includes a substrate and a semiconductor layer arranged at the substrate, wherein the substrate includes, at a side facing the semiconductor layer, a top side with a width B1 in a first lateral direction and, at a side opposite to the top side, a bottom side with a width B3 in the first lateral direction, wherein the substrate has a width B2 in the first lateral direction at a half height between the top side and the bottom side, and wherein the following applies to widths B1, B2 and B3: B1?B2<B2?B3, and B1?B2>B3.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: January 26, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Isabel Otto, Patrick Rode
  • Publication number: 20200168505
    Abstract: A semiconductor chip, a method for producing a semiconductor chip and an apparatus having a plurality of semiconductor chips are disclosed. In an embodiment a chip includes a substrate and a semiconductor layer arranged at the substrate, wherein the substrate includes, at a side facing the semiconductor layer, a top side with a width B1 in a first lateral direction and, at a side opposite to the top side, a bottom side with a width B3 in the first lateral direction, wherein the substrate has a width B2 in the first lateral direction at a half height between the top side and the bottom side, and wherein the following applies to widths B1, B2 and B3: B1-B2<B2-B3, and B1?B2>B3.
    Type: Application
    Filed: June 21, 2017
    Publication date: May 28, 2020
    Inventors: Isabel Otto, Patrick Rode
  • Patent number: 10242974
    Abstract: A method for producing a plurality of optoelectronic semiconductor components (100) is provided, comprising the following steps: a) providing an auxiliary carrier (2); b) providing a plurality of semiconductor chips (10), wherein each of the semiconductor chips has a carrier body (12) and a semiconductor body (4) arranged on an upper side (22) of the carrier body; c) attaching the plurality of semiconductor chips on the auxiliary carrier, wherein the semiconductor chips are spaced apart from one another in a lateral direction (L) and wherein the semiconductor bodies are facing the auxiliary carrier, as seen from the carrier body; d) forming a scattering layer (18), at least in regions between the semiconductor bodies of adjacent semiconductor chips; e) forming a composite package (20); f) removing the auxiliary carrier (2); and g) individually separating the composite package into a plurality of optoelectronic semiconductor components (100).
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 26, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz Hoeppel, Juergen Moosburger, Andreas Ploessl, Patrick Rode, Peter Nagel, Dominik Scholz
  • Patent number: 9853186
    Abstract: The invention relates to a light-emitting semiconductor component, comprising—a first semiconductor body (1), which comprises an active zone (11) in which during the operation of the light-emitting semiconductor component electromagnetic radiation is generated, at least some of which leaves the first semiconductor body (1) through a radiation exit surface (1a), and—a second semiconductor body (2), which is suitable for converting the electromagnetic radiation into converted electromagnetic radiation having a longer wavelength, wherein—the first semiconductor body (1) and the second semiconductor body (2) are produced separately from each other,—the second semiconductor body (2) is electrically inactive, and—the second semiconductor body (2) is in direct contact with the radiation exit surface (1a) and is attached there to the first semiconductor body (1) without connecting means.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: December 26, 2017
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Sabathil, Andreas Plöβl, Hans-Jürgen Lugauer, Alexander Linkov, Patrick Rode
  • Patent number: 9825198
    Abstract: A method of producing a plurality of optoelectronic semiconductor chips includes a) providing a layer composite assembly having a principal plane which delimits the layer composite assembly in a vertical direction, and includes a semiconductor layer sequence having an active region that generates and/or detects radiation, wherein a plurality of recesses extending from the principal plane in a direction of the active region are formed in the layer composite assembly; b) forming a planarization layer on the principal plane such that the recesses are at least partly filled with material of the planarization layer; c) at least regionally removing material of the planarization layer to level the planarization layer; and d) completing the semiconductor chips, wherein for each semiconductor chip at least one semiconductor body emerges from the semiconductor layer sequence.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: November 21, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Patrick Rode, Lutz Hoeppel, Norwin von Malm, Stefan Illek, Albrecht Kieslich, Siegfried Herrmann
  • Patent number: 9806224
    Abstract: A semiconductor layer sequence includes a first nitridic compound semiconductor layer, a second nitridic compound semiconductor layer, and an intermediate layer arranged between the first and second nitridic compound semiconductor layers. Beginning with the first nitridic compound semiconductor layer, the intermediate layer and the second nitridic compound semiconductor layer are arranged one after the other in a direction of growth of the semiconductor layer sequence and are adjacent to each other in direct succession. The intermediate layer has a lattice constant different from the lattice constant of the first nitridic compound semiconductor layer at least at some points. The second nitridic compound semiconductor layer is lattice-adapted to the intermediate layer at least at some points.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 31, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Werner Bergbauer, Philipp Drechsel, Peter Stauβ, Patrick Rode
  • Patent number: 9735319
    Abstract: An optoelectronic semiconductor chip includes a multiplicity of active regions arranged at a distance from one another, and a continuous current spreading layer, wherein at least one of the active regions has a main extension direction, one of the active regions has a core region formed with a first semiconductor material, the active region has an active layer covering the core region at least in directions transversely with respect to the main extension direction of the active region, the active region has a cover layer formed with a second semiconductor material and covers the active layer at least in directions transversely with respect to the main extension direction of the active region, and the current spreading layer covers all cover layers of the active region.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: August 15, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Mandl, Martin Strassburg, Christopher Kölper, Alexander F. Pfeuffer, Patrick Rode
  • Patent number: 9691815
    Abstract: In at least one embodiment of the method, said method includes the following steps: A) producing radiation-active islands (4) having a semiconductor layer sequence (3) on a growth substrate (2), wherein the islands (4) each comprise at least one active zone (33) of the semiconductor layer sequence (3), and an average diameter of the islands (4), as viewed in a top view of the growth substrate, amounts to between 50 nm and 10 ?m inclusive, B) producing a separating layer (5) on a side of the islands (4) facing the growth substrate (2), wherein the separating layer (5) surrounds the islands (4) all around, as viewed in a top view of the growth substrate (2), C) attaching a carrier substrate (6) to a side of the islands (4) facing away from the growth substrate (2), and D) detaching the growth substrate (2) from the islands (4), wherein at least a part of the separating layer (5) is destroyed and/or at least temporarily softened during the detachment.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: June 27, 2017
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Martin Mandl, Martin Strassburg, Christopher Koelper, Alexander F. Pfeuffer, Patrick Rode
  • Patent number: 9685589
    Abstract: An optoelectronic component includes a layer structure which has a first gallium nitride layer and an aluminum-containing nitride intermediate layer. In this case, the aluminum-containing nitride intermediate layer adjoins the first gallium nitride layer. The layer structure has an undoped second gallium nitride layer which adjoins the aluminum-containing nitride intermediate layer.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: June 20, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Werner Bergbauer, Philipp Drechsel, Peter Stauss, Patrick Rode
  • Patent number: 9660137
    Abstract: A method is provided for producing a nitride compound semiconductor device. A growth substrate has a silicon surface. A buffer layer, which comprises AlxInyGa1-x-yN with 0?x?1, 0?y?1 and x+y?1, is grown onto the silicon surface of the substrate. A semiconductor layer sequence is grown onto the buffer layer. The buffer layer includes a material composition that varies in such a way that a lateral lattice constant of the buffer layer increases stepwise or continuously in a first region and decreases stepwise or continuously in a second region, which follows the first region in the growth direction. At an interface with the semiconductor layer sequence, the buffer layer includes a smaller lateral lattice constant than a semiconductor layer of the semiconductor layer sequence adjoining the buffer layer.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: May 23, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Werner Bergbauer, Philipp Drechsel, Peter Stauss, Patrick Rode
  • Patent number: 9590008
    Abstract: A radiation-emitting semiconductor chip includes a carrier and a semiconductor body having a semiconductor layer sequence, wherein an emission region and a protective diode region are formed in the semiconductor body having the semiconductor layer sequence; the semiconductor layer sequence includes an active region that generates radiation and is arranged between a first semiconductor layer and a second semiconductor layer; the first semiconductor layer is arranged on a side of the active region facing away from the carrier; the emission region has a recess extending through the active region; the first semiconductor layer, in the emission region, electrically conductively connects to a first connection layer, wherein the first connection layer extends in the recess from the first semiconductor layer toward the carrier; the second semiconductor layer, in the emission region, electrically conductively connects to a second connection layer.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: March 7, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Jürgen Moosburger, Norwin von Malm, Patrick Rode, Lutz Höppel, Karl Engl
  • Publication number: 20170005079
    Abstract: A method for producing a plurality of optoelectronic semiconductor components (100) is provided, comprising the following steps: a) providing an auxiliary carrier (2); b) providing a plurality of semiconductor chips (10), wherein each of the semiconductor chips has a carrier body (12) and a semiconductor body (4) arranged on an upper side (22) of the carrier body; c) attaching the plurality of semiconductor chips on the auxiliary carrier, wherein the semiconductor chips are spaced apart from one another in a lateral direction (L) and wherein the semiconductor bodies are facing the auxiliary carrier, as seen from the carrier body; d) forming a scattering layer (18), at least in regions between the semiconductor bodies of adjacent semiconductor chips; e) forming a composite package (20); f) removing the auxiliary carrier (2); and g) individually separating the composite package into a plurality of optoelectronic semiconductor components (100).
    Type: Application
    Filed: January 21, 2015
    Publication date: January 5, 2017
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz HOEPPEL, Juergen MOOSBURGER, Andreas PLOESSL, Patrick RODE, Peter NAGEL, Dominik SCHOLZ
  • Patent number: 9497826
    Abstract: A light-emitting diode arrangement includes a piezoelectric transformer having at least one output connection position, and a high-voltage light-emitting diode including a high-voltage light-emitting diode chip including at least two active regions connected in series with one another, wherein the high-voltage light-emitting diode is electrically connected to the output connection position of the piezo transformer.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 15, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Norwin von Malm, Hubert Maiwald, Robert Kraus, Patrick Rode, Ralph Wirth
  • Publication number: 20160247966
    Abstract: The invention relates to a light-emitting semiconductor component, comprising—a first semiconductor body (1), which comprises an active zone (11) in which during the operation of the light-emitting semiconductor component electromagnetic radiation is generated, at least some of which leaves the first semiconductor body (1) through a radiation exit surface (1a), and—a second semiconductor body (2), which is suitable for converting the electromagnetic radiation into converted electromagnetic radiation having a longer wavelength, wherein—the first semiconductor body (1) and the second semiconductor body (2) are produced separately from each other,—the second semiconductor body (2) is electrically inactive, and—the second semiconductor body (2) is in direct contact with the radiation exit surface (1a) and is attached there to the first semiconductor body (1) without connecting means.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Matthias SABATHIL, Andreas PLÖßL, Hans-Jürgen LUGAUER, Alexander LINKOV, Patrick RODE
  • Publication number: 20160133794
    Abstract: An optoelectronic semiconductor chip includes a multiplicity of active regions arranged at a distance from one another, and a continuous current spreading layer, wherein at least one of the active regions has a main extension direction, one of the active regions has a core region formed with a first semiconductor material, the active region has an active layer covering the core region at least in directions transversely with respect to the main extension direction of the active region, the active region has a cover layer formed with a second semiconductor material and covers the active layer at least in directions transversely with respect to the main extension direction of the active region, and the current spreading layer covers all cover layers of the active region.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 12, 2016
    Inventors: Martin Mandl, Martin Strassburg, Christopher Kölper, Alexander F. Pfeuffer, Patrick Rode
  • Patent number: 9331243
    Abstract: The invention relates to a light-emitting semiconductor component, comprising—a first semiconductor body (1), which comprises an active zone (11) in which during the operation of the light-emitting semiconductor component electromagnetic radiation is generated, at least some of which leaves the first semiconductor body (1) through a radiation exit surface (1a), and—a second semiconductor body (2), which is suitable for converting the electromagnetic radiation into converted electromagnetic radiation having a longer wavelength, wherein—the first semiconductor body (1) and the second semiconductor body (2) are produced separately from each other, —the second semiconductor body (2) is electrically inactive, and—the second semiconductor body (2) is in direct contact with the radiation exit surface (1a) and is attached there to the first semiconductor body (1) without connecting means.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: May 3, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Sabathil, Andreas Plöβl, Hans-Jürgen Lugauer, Alexander Linkov, Patrick Rode
  • Patent number: 9318651
    Abstract: A semiconductor chip with a layer stack includes a first semiconductor layer sequence and a second semiconductor layer sequence. The first semiconductor layer sequence includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type and an active zone arranged therebetween. The second semiconductor layer sequence includes the second semiconductor region of the second conductivity type, a third semiconductor region of the first conductivity type and a second active zone arranged therebetween.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: April 19, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Adrian Stefan Avramescu, Patrick Rode, Martin Strassburg
  • Publication number: 20160093765
    Abstract: A method is provided for producing a nitride compound semiconductor device. A growth substrate has a silicon surface. A buffer layer, which comprises AlxInyGa1-x-yN with 0?x?1, 0?y?1 and x+y?1, is grown on onto the silicon surface of the substrate. A semiconductor layer sequence is grown onto the buffer layer. The buffer layer includes a material composition that varies in such a way that a lateral lattice constant of the buffer layer increases stepwise or continuously in a first region and decreases stepwise or continuously in a second region, which follows the first region in the growth direction. At an interface with the semiconductor layer sequence, the buffer layer includes a smaller lateral lattice constant than a semiconductor layer of the semiconductor layer sequence adjoining the buffer layer.
    Type: Application
    Filed: May 28, 2014
    Publication date: March 31, 2016
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Werner Bergbauer, Philipp Drechsel, Peter Stauss, Patrick Rode
  • Patent number: 9293652
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer stack including a nitride compound semiconductor material on a carrier substrate, wherein the semiconductor layer stack includes an active layer that emits an electromagnetic radiation, the semiconductor layer stack being arranged between a layer of a first conductivity and a layer of a second conductivity, the layer of the first conductivity is adjacent a front of the semiconductor layer stack, the layer of the first conductivity electrically connects to a first electrical connection layer covering at least a portion of a back of the semiconductor layer stack, and the layer of the second conductivity type electrically connects to a second electrical connection layer arranged at the back.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: March 22, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Werner Bergbauer, Patrick Rode, Martin Strassburg
  • Patent number: 9257611
    Abstract: An optoelectronic semiconductor chip includes a multiplicity of active regions, arranged at a distance from one another, and a reflective layer arranged at an underside of the multiplicity of active regions, wherein at least one of the active regions has a main extension direction, one of the active regions has a core region formed with a first semiconductor material, the active region has an active layer, covering the core region at least in directions transversely with respect to the main extension direction of the active region, the active region has a cover layer formed with a second semiconductor material and covers the active layer at least in directions transversely with respect to the main extension direction of the active region, and the reflective layer reflects electromagnetic radiation generated during operation in the active layer.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: February 9, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Mandl, Martin Strassburg, Christopher Kölper, Alexander F. Pfeuffer, Patrick Rode