Patents by Inventor Patrick S. Stayton

Patrick S. Stayton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11707483
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instauces, micellic assemblies provided herein are pH sensitive particles.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: July 25, 2023
    Assignees: UNIVERSITY OF WASHINGTON, GENEVANT SCIENCES GMBH
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E. E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20220152091
    Abstract: Methods and compositions for treating traumatic brain injury. The methods and compositions utilize a multi-functional oxygen reactive polymer (ORP) that includes repeating units that include a reactive oxygen species (ROS) scavenging group and a polyalkylene oxide group. For theranostic applications, the oxygen reactive polymer further includes a diagnostic group.
    Type: Application
    Filed: July 19, 2021
    Publication date: May 19, 2022
    Applicant: University of Washington
    Inventors: Patrick S. Stayton, Menko P. Ypma, Peter A. Chiarelli, Joshua Sang Hun Park, Richard G. Ellenbogen, Julia Mengyun Xu, Pierre D. Mourad, Donghoon Lee, Anthony Convertine, Forrest M. Kievit
  • Patent number: 11065272
    Abstract: Methods and compositions for treating traumatic brain injury. The methods and compositions utilize a multi-functional oxygen reactive polymer (ORP) that includes repeating units that include a reactive oxygen species (ROS) scavenging group and a polyalkylene oxide group. For theranostic applications, the oxygen reactive polymer further includes a diagnostic group.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: July 20, 2021
    Assignee: University of Washington
    Inventors: Patrick S. Stayton, Menko P. Ypma, Peter A. Chiarelli, Joshua Sang Hun Park, Richard G. Ellenbogen, Julia Mengyun Xu, Pierre D. Mourad, Donghoon Lee, Anthony Convertine, Forrest M. Kievit
  • Publication number: 20200405881
    Abstract: Provided herein are engineered cells and methods for engineering cells to deliver a therapeutic agent, e.g., a small molecule, peptide or other drug, to a cell or tissue to be treated.
    Type: Application
    Filed: March 6, 2018
    Publication date: December 31, 2020
    Applicants: UNIVERSITY OF WASHINGTON, SEATTLE CHILDREN'S RESEARCH INSTITUTE, COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Patrick S. STAYTON, Anthony CONVERTINE, Debobrato DAS, Hye-Nam SON, Selvi SRINIVASAN, Katherine MONTGOMERY, Ian BLUMENTHAL, Courtney CRANE, Michael JENSEN, James MATTHAEI, John CHIEFARI, Maarten DANIAL, Fei HUANG, James MACDONALD, Almar POSTMA, Kathleen TURNER
  • Patent number: 10709791
    Abstract: Polymeric carriers for the delivery of therapeutic agents and methods for making and using the same. The polymeric carriers include copolymers, diblock copolymers, polymeric architectures that include the copolymers and diblock copolymers, and particles assemblies comprising the copolymers, diblock copolymers, and polymeric architectures that include the copolymers.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: July 14, 2020
    Assignee: University of Washington
    Inventors: Patrick S. Stayton, Anthony J. Convertine, Daniel M. Ratner, Debobrato Das, Selvi Srinivasan
  • Publication number: 20200147121
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instances, micellic assemblies provided herein are pH sensitive particles.
    Type: Application
    Filed: September 23, 2019
    Publication date: May 14, 2020
    Applicants: University of Washington, GENEVANT SCIENCES GMBH
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20190365906
    Abstract: Provided herein are particles assemblies including a shell surrounding a core. The shell includes a particle-stabilizing random copolymer. The core includes a core random copolymer. The particle assemblies have a biomimetic design in which the polymeric components containing discrete chemical and biological functionalities are designed to spontaneously self-assemble into particles. Also provided herein are random copolymers having conjugated therapeutic agents that can be cleaved from the copolymers by an enzyme or water.
    Type: Application
    Filed: April 11, 2019
    Publication date: December 5, 2019
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Patrick S. Stayton, Anthony Convertine, Daniel M. Ratner, Selvi Srinivasan, Debobrato Das, Fang-Yi Su, Jasmin Chen, David Yee-Shawn Chiu, Daniel Douglas Lane
  • Patent number: 10420790
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instauces, micellic assemblies provided herein are pH sensitive particles.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: September 24, 2019
    Assignees: University of Washington, GENEVANT SCIENCES GMBH
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E. E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20180289736
    Abstract: Methods and compositions for treating traumatic brain injury. The methods and compositions utilize a multi-functional oxygen reactive polymer (ORP) that includes repeating units that include a reactive oxygen species (ROS) scavenging group and a polyalkylene oxide group. For theranostic applications, the oxygen reactive polymer further includes a diagnostic group.
    Type: Application
    Filed: October 6, 2016
    Publication date: October 11, 2018
    Applicant: University of Washington
    Inventors: Patrick S. Stayton, Menko R. Ypma, Peter A. Chiarelli, Joshua Sang Hun Park, Richard G. Ellenbogen, Julia Mengyun Xu, Pierre D. Mourad, Donghoon Lee, Anthony Convertine, Forrest M. Kievit
  • Patent number: 10066043
    Abstract: Polymeric compounds having spatially controlled bioconjugation sites are described. Functionalization is achieved by selective ?-terminal chain extension of polymer chains by radical polymerization, such as reversible addition-fragmentation chain transfer (RAFT) polymerization.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: September 4, 2018
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Scott M. Henry, Robert W. Overell, Paul H. Johnson
  • Publication number: 20180171056
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 21, 2018
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Publication number: 20180043029
    Abstract: Polymeric carriers for the delivery of therapeutic agents and methods for making and using the same. The polymeric carriers include copolymers, diblock copolymers, polymeric architectures that include the copolymers and diblock copolymers, and particles assemblies comprising the copolymers, diblock copolymers, and polymeric architectures that include the copolymers.
    Type: Application
    Filed: November 12, 2015
    Publication date: February 15, 2018
    Applicant: University of Washington
    Inventors: Patrick S. Stayton, Anthony J. Convertine, Daniel M. Ratner, Debobrato Das, Selvi Srinivasan
  • Patent number: 9862792
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: January 9, 2018
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Patent number: 9750814
    Abstract: The present invention provides designed polypeptides that selectively bind to and inhibit Epstein Barr protein BHFR1, and B cell lymphoma family proteins, and are thus useful for treating Epstein Barr-related diseases and cancer.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 5, 2017
    Assignee: University of Washington
    Inventors: Erik Procko, David Baker, Geoffrey Y. Berguig, Patrick S. Stayton, Yifan Song, Stephanie Ann Berger, Daniel-Adriano Silva
  • Publication number: 20170239360
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instauces, micellic assemblies provided herein are pH sensitive particles.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 24, 2017
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Patent number: 9662403
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instances, micellic assemblies provided herein are pH sensitive particles.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: May 30, 2017
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E. E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20170145141
    Abstract: Polymeric compounds having spatially controlled bioconjugation sites are described. Functionalization is achieved by selective ?-terminal chain extension of polymer chains by radical polymerization, such as reversible addition-fragmentation chain transfer (RAFT) polymerization.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Scott M. Henry, Robert W. Overell, Paul H. Johnson
  • Publication number: 20170096517
    Abstract: Described herein are copolymers, and methods of making and utilizing such copolymers. Such copolymers have at least two blocks: a first block that has at least one unit that is hydrophilic at physiologic pH, and a second block that has hydrophobic groups. This second block further has at least one unit with a group that is anionic at about physiologic pH. The described copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the copolymer is endosomolytic.
    Type: Application
    Filed: September 13, 2016
    Publication date: April 6, 2017
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Danielle Benoit, Craig L. Duvall, Paul H. Johnson, Anna S. Gall
  • Patent number: 9593169
    Abstract: Polymeric compounds having spatially controlled bioconjugation sites are described. Functionalization is achieved by selective ?-terminal chain extension of polymer chains by radical polymerization, such as reversible addition-fragmentation chain transfer (RAFT) polymerization.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: March 14, 2017
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Scott M. Henry, Robert W. Overell, Paul H. Johnson
  • Publication number: 20170049801
    Abstract: Provided herein are multiblock copolymers, as well as micelles and therapeutic compositions thereof.
    Type: Application
    Filed: September 1, 2016
    Publication date: February 23, 2017
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Mary G. Prieve, Paul H. Johnson, Patrick S. Stayton, Allan S. Hoffman, Robert W. Overell, Anna S. Gall, Amber E.E. Paschal, Charbel Diab, Priyadarsi De, Michael S. DeClue, Sean D. Monahan