Patents by Inventor Patrick Schultz

Patrick Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076836
    Abstract: A rail plate grasping assembly may include a holder part that may be coupled with a rail vehicle that moves along one or more rails of a track with the one or more rails coupled with rail plates that are coupled with rail ties. The assembly also may include a wear part that may be coupled with the holder part and shaped to engage the rail plates to support the rail plates while the rail ties are removed beneath the rail plates. The wear part may be separated from the holder part and replaced with another wear part.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 7, 2024
    Inventors: Neil Patrick Creegan, Nichalos Lee Schultz, Gregory Long
  • Patent number: 10583631
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: March 10, 2020
    Assignee: MELD Manufacturing Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 10500674
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: December 10, 2019
    Assignee: MELD Manufacturing Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20180361501
    Abstract: Solid-state joining of preformed features, such as bosses, flanges, gaskets, centralizers and other features to substrates or cast parts by a solid-state MELD additive manufacturing process is disclosed. Joining can be between same or different materials using same, similar or dissimilar filler material than the materials of the feature and the part that need to be joined.
    Type: Application
    Filed: August 28, 2018
    Publication date: December 20, 2018
    Inventors: Nanci Hardwick, Chase Cox, Jeffrey Patrick Schultz, Kumar Kandasamy
  • Patent number: 9943929
    Abstract: The present invention relates to tooling and methods for disposing, coating, building up, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive loading of a consumable metal material against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein the throat is operably configured such that during rotation of the non-consumable member at a selected speed, the throat exerts normal forces on and rotates the consumable member at the selected speed; and comprising means for dispensing the consumable member through the throat and onto a substrate using frictional heating and compressive loading. Embodiments of the invention also include fabrication methods using the tools described herein.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 17, 2018
    Assignee: AEROPROBE CORPORATION
    Inventors: Jeffrey Patrick Schultz, Kevin D. Creehan
  • Publication number: 20180085849
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 29, 2018
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 9862054
    Abstract: Additive friction stir methods for repairing substrates, coating substrates, fabricating/adding/attaching ribs, joining substrates, stiffening and enhancing structures, surface modification, enhancing surface properties, welding, coating, and extrusion are described. An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a substrate or to repair a defect in a substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the substrate. Further described is a system for fabricating a rib joined to a substrate through extrusion.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 9, 2018
    Assignee: Aeroprobe Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20170216962
    Abstract: The present invention relates to tooling and methods for disposing, coating, building up, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive loading of a consumable metal material against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein the throat is operably configured such that during rotation of the non-consumable member at a selected speed, the throat exerts normal forces on and rotates the consumable member at the selected speed; and comprising means for dispensing the consumable member through the throat and onto a substrate using frictional heating and compressive loading. Embodiments of the invention also include fabrication methods using the tools described herein.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Inventors: Jeffrey Patrick Schultz, Kevin D. Creehan
  • Patent number: 9643279
    Abstract: The present invention relates to tooling and methods for disposing, coating, building up, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive loading of a consumable metal material against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein the throat is operably configured such that during rotation of the non-consumable member at a selected speed, the throat exerts normal forces on and rotates the consumable member at the selected speed; and comprising means for dispensing the consumable member through the throat and onto a substrate using frictional heating and compressive loading. Embodiments of the invention also include fabrication methods using the tools described herein.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: May 9, 2017
    Assignee: AEROPROBE CORPORATION
    Inventors: Jeffrey Patrick Schultz, Kevin D. Creehan
  • Publication number: 20170057204
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 9511446
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: December 6, 2016
    Assignee: Aeroprobe Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20160175982
    Abstract: A method for joining materials using additive friction stir techniques is provided. The method joins a material to a substrate, especially where the material to be joined and the substrate are dissimilar metals. One such method comprises (a) providing a substrate with one or more grooves; (b) rotating and translating an additive friction-stir tool relative to the substrate; (c) feeding a filler material through the additive friction-stir tool; and (d) depositing the filler material into the one or more grooves of the substrate. Translation and rotation of the tool causes heating and plastic deformation of the filler material, which flows into the grooves of the substrate resulting in an interlocking bond between the substrate and filler material. In embodiments, the depositing of the filler material causes deformation of the grooves in the substrate and an interlocking configuration between the grooves of the substrate and the filler material results.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 23, 2016
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Publication number: 20160107262
    Abstract: The present invention relates to tooling and methods for disposing, coating, building up, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive loading of a consumable metal material against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein the throat is operably configured such that during rotation of the non-consumable member at a selected speed, the throat exerts normal forces on and rotates the consumable member at the selected speed; and comprising means for dispensing the consumable member through the throat and onto a substrate using frictional heating and compressive loading. Embodiments of the invention also include fabrication methods using the tools described herein.
    Type: Application
    Filed: October 29, 2015
    Publication date: April 21, 2016
    Inventors: Jeffrey Patrick Schultz, Kevin D. Creehan
  • Publication number: 20160074958
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 17, 2016
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 9266191
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 23, 2016
    Assignee: Aeroprobe Corporation
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 9205578
    Abstract: The present invention relates to tooling and methods for disposing, coating, building up, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive loading of a consumable metal material against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein the throat is operably configured such that during rotation of the non-consumable member at a selected speed, the throat exerts normal forces on and rotates the consumable member at the selected speed; and comprising means for dispensing the consumable member through the throat and onto a substrate using frictional heating and compressive loading. Embodiments of the invention also include fabrication methods using the tools described herein.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: December 8, 2015
    Assignee: Aeroprobe Corporation
    Inventors: Jeffrey Patrick Schultz, Kevin D. Creehan
  • Publication number: 20150165546
    Abstract: An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a metallic substrate or to repair a defect in a metallic substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a metallic substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the metallic substrate. Further described is a system for fabricating a rib joined to a metallic substrate through extrusion.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 18, 2015
    Inventors: Kumar Kandasamy, Jeffrey Patrick Schultz
  • Patent number: 8893954
    Abstract: A low-temperature friction-based coating method termed friction stir fabrication (FSF) is disclosed, in which material is deposited onto a substrate and subsequently stirred into the substrate using friction stir processing to homogenize and refine the microstructure. This solid-state process is capable of depositing coatings, including nanocrystalline aluminum and/or metal matrix composites and the like, onto substrates such as aluminum at relatively low temperatures. A method of making rod stock for use in the FSF process is also disclosed.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: November 25, 2014
    Assignee: Aeroprobe Corporation
    Inventors: Jeffrey Patrick Schultz, Kevin D. Creehan
  • Patent number: 8875976
    Abstract: The present invention relates to tools and methods for disposing, coating, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive/shear loading of a consumable metal against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein consumable filler material is capable of being introduced to the throat in a continuous manner during deposition using frictional heating and compressive/shear loading of the filler material onto the substrate. Preferred embodiments according to the invention include such tools operably configured for applying a force or displacement to the filler material during deposition.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: November 4, 2014
    Assignee: Aeroprobe Corporation
    Inventors: Jeffrey Patrick Schultz, Kevin Creehan
  • Publication number: 20140174344
    Abstract: The present invention relates to tools and methods for disposing, coating, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive/shear loading of a consumable metal against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein consumable filler material is capable of being introduced to the throat in a continuous manner during deposition using frictional heating and compressive/shear loading of the filler material onto the substrate. Preferred embodiments according to the invention include such tools operably configured for applying a force or displacement to the filler material during deposition.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Inventors: Jeffrey Patrick Schultz, Kevin D. Creehan