Patents by Inventor Patrick Scott Leslie

Patrick Scott Leslie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250019294
    Abstract: A method of forming recesses in a glass-based laminate, the method comprising: irradiating a portion of a first clad layer of a glass laminate with a pulsed laser beam, the glass-based laminate comprising the first clad layer, the irradiating producing an irradiated portion of the first clad layer and a non-irradiated portion of the first clad layer; and etching the first clad layer with an etchant that selectively etches the irradiated portion of the first clad layer relative to the non-irradiated portion of the first clad layer and selectively etches the irradiated portion of the first clad layer relative to the core layer, wherein irradiating with a pulsed laser beam is one of (1) irradiating with a focused pulsed laser beam producing damage or other physical or chemical alteration in the first clad layer to a depth not more than the first clad layer thickness and within 0.
    Type: Application
    Filed: November 18, 2022
    Publication date: January 16, 2025
    Inventors: Patrick Scott Leslie, Craig John Mancusi Ungaro
  • Publication number: 20230339042
    Abstract: A method of laser processing a transparent workpiece (160) includes directing a laser beam (112) into the transparent workpiece (160) wherein a portion of the laser beam (112) directed into the transparent workpiece (160) includes a laser beam focal column (113) and generates an induced absorption to produce a defect column (172) within the transparent workpiece (160), the laser beam focal column (113) having a radius of maximum beam intensity that is variable along a length of the laser beam focal column (113) such that the radius of maximum beam intensity has at least two non-zero angles of propagation with respect to a center line of the laser beam focal column (113) along the length of the laser beam focal column (113).
    Type: Application
    Filed: June 18, 2021
    Publication date: October 26, 2023
    Inventors: Patrick Scott Leslie, Craig John Mancusi Ungaro
  • Publication number: 20230207385
    Abstract: Systems, devices, and techniques for creating blind annular vias for metallized vias are described. For example, a vortex beam may be applied to an optically transmissive substrate, where the vortex beam may modify a portion of the substrate in an annular shape. The annular shape may extend from a surface of the substrate to a depth that is less than a thickness of the substrate, and the annular shape may have an annular width (e.g., a ring width) that is the same for various diameters of the annular shape. A blind annular via may be formed by etching the modified portion of the substrate, where the blind annular via may include a pillar comprising the same material as the surrounding substrate. In addition, a metallized annular via may be created by filling the blind annular via with a conductive material, and removing a portion of the substrate opposite the surface.
    Type: Application
    Filed: June 14, 2021
    Publication date: June 29, 2023
    Inventors: Patrick Scott Leslie, Chukwudi Azubuike Okoro
  • Publication number: 20220153632
    Abstract: A method of forming a through hole in a glass substrate is provided. The method includes irradiating a surface of a glass substrate with a mid-infrared or far-infrared laser to form a pilot hole including a plurality of cracks extending radially outward from the pilot hole. The pilot hole is etched to expand a diameter of the pilot hole to at least encompass the plurality of cracks to form a through hole having a through hole entry diameter of about 200 micrometers to about 1.5 millimeters.
    Type: Application
    Filed: March 20, 2020
    Publication date: May 19, 2022
    Inventor: Patrick Scott Leslie
  • Publication number: 20220057561
    Abstract: Apparatus can comprise a light source and a light guide plate. The light guide plate can comprise a plurality of features within an interior of the light guide plate. A feature of the plurality of features can comprise a first refractive index that is different from a refractive index of the light guide plate. A spacing between a pair of adjacent features of the plurality of features can be from about 20 micrometers to about 200 micrometers. The apparatus can be used to direct light out of the light guide plate with a peak radiance oriented from 0° to 30° from a direction normal to the first major surface of the light guide plate. Methods of making the apparatus can comprise emitting a burst of pulses from a laser. Methods can comprise focusing the burst of pulses into a line focus within the light guide plate.
    Type: Application
    Filed: January 7, 2020
    Publication date: February 24, 2022
    Inventors: Patrick Scott Leslie, Shenping Li, Leonard Thomas Masters, Johannes Moll, Craig John Mancusi Ungaro
  • Publication number: 20210359185
    Abstract: A device includes a glass substrate, a plurality of electronic components, a metallization layer, and a plurality of vias. The plurality of electronic components are on a first surface of the glass substrate. The metallization layer is on a second surface of the glass substrate opposite to the first surface. The plurality of vias extend through the glass substrate. At least one via is in electrical communication with an electronic component and the metallization layer.
    Type: Application
    Filed: October 9, 2019
    Publication date: November 18, 2021
    Inventors: Sean Matthew Garner, Patrick Scott Leslie, Barada Kanta Nayak, Michael Lesley Sorensen, Rajesh Vaddi