Patents by Inventor Patrick W. Kinzie

Patrick W. Kinzie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210251525
    Abstract: An enzymatic sensor configured to determine the concentration of levodopa present in a sample according to a current or a resonant frequency produced in response to levodopa interactions with L-amino acid decarboxylase present in the sensor. A processor associated with the sensor determines levodopa concentration and produces dose recommendation or output according to levodopa concentration.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 19, 2021
    Inventors: David Probst, Randal Schulhauser, Patrick W. Kinzie, Jadin C. Jackson, Daniel Hahn
  • Publication number: 20210251497
    Abstract: A system for detecting strokes includes a sensor device configured to obtain physiological data from a patient, for example brain activity data. The sensor device can include electrodes configured to be disposed at the back of the patient's neck or base of the skull. The electrodes can detect electrical signals corresponding to brain activity in the P3, Pz, and/or P4 brain regions or other brain regions. A computing device communicatively coupled to the sensor device is configured to receive the physiological data and analyze it to indicate whether the patient has suffered a stroke.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 19, 2021
    Inventors: Randal C. Schulhauser, John Wainwright, Eric J. Panken, Jadin C. Jackson, Alejo Chavez Gaxiola, Aaron Gilletti, Eduardo N. Warman, Paul G. Krause, Eric M. Christensen, Patrick W. Kinzie, Julia Slopsema, Avram Scheiner, Brian D. Pederson, David J. Miller
  • Publication number: 20210228866
    Abstract: A lead for delivering electrical stimulation therapy is described. The lead includes an elongated member defining a longitudinal axis, one or more electrodes disposed at a distal end of the elongated member, a plurality of collars located along the longitudinal axis, and one or more fixation members. At least one of the fixation members is a bow-like member having a first connection point to a first collar of the plurality of collars and a second connection point to a second collar of the plurality of collars. The distal end of the elongated member is configured for insertion in a tongue of a patient such that the one or more electrodes are implanted proximate to one or more motor points of a protrusor muscle within the tongue of the patient and the bow-like member of the one or more fixation members is implanted within tissue of the tongue.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Inventors: Avram Scheiner, Patrick W. Kinzie, Randal C. Schulhauser, David C. Hacker
  • Publication number: 20210150822
    Abstract: Methods, systems, and devices for creating a model of a medical device for use in an extended reality (XR) system are described. The method may include receiving a three-dimensional model of the medical device, where the three-dimensional model is represented by a plurality of vectors. The method may further include reducing a number of the plurality of vectors to at least below a maximum vector count threshold while maintaining at least a minimum model resolution threshold. In some cases, the method may include assigning one or more components to the reduced number of the plurality of vectors. The method may further include configuring a software-executable file for displaying an XR version of the three-dimensional model of the medical device.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Ryan H. Gertenbach, Michael J. Ferguson, William C. Harding, Patrick W. Kinzie, Emily Clare Byrne
  • Publication number: 20210106226
    Abstract: An embodiment of a sensor device includes a base substrate, a circuit pattern formed overlying the interior surface of the substrate, a physiological characteristic sensor element on the exterior surface of the substrate, conductive plug elements located in vias formed through the substrate, each conductive plug element having one end coupled to a sensor electrode, and having another end coupled to the circuit pattern, a multilayer component stack carried on the substrate and connected to the circuit pattern, the stack including features and components to provide processing and wireless communication functionality for sensor data obtained in association with operation of the sensor device, and an enclosure structure coupled to the substrate to enclose the interior surface of the substrate, the circuit pattern, and the stack.
    Type: Application
    Filed: December 4, 2020
    Publication date: April 15, 2021
    Inventors: Daniel Hahn, David L. Probst, Randal C. Schulhauser, Mohsen Askarinya, Patrick W. Kinzie, Thomas P. Miltich, Mark D. Breyen, Santhisagar Vaddiraju
  • Patent number: 10943410
    Abstract: Methods, systems, and devices for creating a model of a medical device for use in an extended reality (XR) system are described. The method may include receiving a three-dimensional model of the medical device, where the three-dimensional model is represented by a plurality of vectors. The method may further include reducing a number of the plurality of vectors to at least below a maximum vector count threshold while maintaining at least a minimum model resolution threshold. In some cases, the method may include assigning one or more components to the reduced number of the plurality of vectors. The method may further include configuring a software-executable file for displaying an XR version of the three-dimensional model of the medical device.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 9, 2021
    Assignee: Medtronic, Inc.
    Inventors: Ryan H. Gertenbach, Michael J. Ferguson, William C. Harding, Patrick W. Kinzie, Emily Clare Byrne
  • Patent number: 10898151
    Abstract: Methods, systems, and devices for medical imaging are described. Examples may include an augmented reality (AR) server receiving a set of medical imaging data acquired by at least a first imaging modality. The set of medical imaging data may include a visual representation of a biological structure of a body. Next, the medical imaging data can be used to render an isolated anatomical model of a least a portion of the biological structure. The isolated anatomical model can be received by an AR viewing device such as AR glasses. The AR viewing device may display on a display of the AR viewing device, a first view perspective of the isolated anatomical model in a first orientation. The first orientation may be based on a position of the first AR viewing device relative to the body. Examples include displaying a virtual position of the medical instrument in the AR viewing device.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 26, 2021
    Assignee: Medtronic Inc.
    Inventors: William C. Harding, Martha De Cunha Maluf-Burgman, Brian Lee Bechard, Michael J. Ferguson, Patrick W. Kinzie, Ryan H. Gertenbach, Emily Clare Byrne
  • Patent number: 10874300
    Abstract: An embodiment of a sensor device includes a base substrate, a circuit pattern formed overlying the interior surface of the substrate, a physiological characteristic sensor element on the exterior surface of the substrate, conductive plug elements located in vias formed through the substrate, each conductive plug element having one end coupled to a sensor electrode, and having another end coupled to the circuit pattern, a multilayer component stack carried on the substrate and connected to the circuit pattern, the stack including features and components to provide processing and wireless communication functionality for sensor data obtained in association with operation of the sensor device, and an enclosure structure coupled to the substrate to enclose the interior surface of the substrate, the circuit pattern, and the stack.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: December 29, 2020
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Daniel Hahn, David Probst, Randal Schulhauser, Mohsen Askarinya, Patrick W. Kinzie, Thomas P. Miltich, Mark D. Breyen, Santhisagar Vaddiraju
  • Patent number: 10852268
    Abstract: An electrochemical sensor may include a common reference electrode, at least one counter electrode, and a work electrode platform including a plurality of respective work electrodes. Each respective work electrode of the plurality of respective work electrodes may be electrically coupled to the common reference electrode and include a respective reagent substrate configured to react with a respective analyte to produce a signal indicative of a concentration of the respective analyte.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: December 1, 2020
    Assignee: Medtronic, Inc.
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Publication number: 20200281522
    Abstract: A system and method of diagnosing sleep apnea including an implantable device with a sensor, a telemetry circuit and a memory, an external programmer in communication with the telemetry circuit and configured to receive data collected by the sensor and stored in the memory. The system and method include operation of a server, including a processor, in communication with the external programmer and storing an application including instructions that when executed by the processor executes steps of receiving the data collected by the sensor from the external programmer, analyzing the received data collected by the sensor, and transmitting to a remote computer an assessment of the received sensor data, wherein the assessment includes an evaluation of sleep apnea for the patient.
    Type: Application
    Filed: January 24, 2020
    Publication date: September 10, 2020
    Inventors: Avram Scheiner, Patrick W. Kinzie, Randal Schulhauser
  • Publication number: 20200251202
    Abstract: A system including a range of motion, quality of sleep, overall, and control modules. The range of motion module, prior to a procedure being performed on a patient, determines a first range of motion score of the patient based on a first signal generated by a sensor. The quality of sleep module, prior to the procedure being performed on the patient, determines a first quality of sleep score or a first pain score based on the first signal. The overall module determines a combined score based on the first range of motion score and the first quality of sleep score or the first pain score. The control module compares the combined score to a predetermined threshold and predicts an outcome of the procedure based on the comparison. The control module, based on the combined score, determines whether to perform the procedure, adjust the procedure or refrain from performing the procedure.
    Type: Application
    Filed: April 2, 2020
    Publication date: August 6, 2020
    Applicant: Warsaw Orthopedic, Inc.
    Inventors: Randal Schulhauser, Richard L. Brown, Matthew M. Morrison, Patrick W. Kinzie, Jeffrey R. VanRaaphorst, Emily C. Byrne
  • Patent number: 10665337
    Abstract: A system including a range of motion, quality of sleep, overall, and control modules. The range of motion module, prior to a procedure being performed on a patient, determines a first range of motion score of the patient based on a first signal generated by a sensor. The quality of sleep module, prior to the procedure being performed on the patient, determines a first quality of sleep score or a first pain score based on the first signal. The overall module determines a combined score based on the first range of motion score and the first quality of sleep score or the first pain score. The control module compares the combined score to a predetermined threshold and predicts an outcome of the procedure based on the comparison. The control module, based on the combined score, determines whether to perform the procedure, adjust the procedure or refrain from performing the procedure.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 26, 2020
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Randal Schulhauser, Richard L. Brown, Matthew M. Morrison, Patrick W. Kinzie, Jeffrey R. VanRaaphorst, Emily C. Byrne
  • Publication number: 20200160611
    Abstract: Methods, systems, and devices for creating a model of a medical device for use in an extended reality (XR) system are described. The method may include receiving a three-dimensional model of the medical device, where the three-dimensional model is represented by a plurality of vectors. The method may further include reducing a number of the plurality of vectors to at least below a maximum vector count threshold while maintaining at least a minimum model resolution threshold. In some cases, the method may include assigning one or more components to the reduced number of the plurality of vectors. The method may further include configuring a software-executable file for displaying an XR version of the three-dimensional model of the medical device.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Inventors: Ryan H. Gertenbach, Michael J. Ferguson, William C. Harding, Patrick W. Kinzie, Emily Clare Byrne
  • Publication number: 20200129136
    Abstract: Methods, systems, and devices for medical imaging are described. Examples may include an augmented reality (AR) server receiving a set of medical imaging data acquired by at least a first imaging modality. The set of medical imaging data may include a visual representation of a biological structure of a body. Next, the medical imaging data can be used to render an isolated anatomical model of a least a portion of the biological structure. The isolated anatomical model can be received by an AR viewing device such as AR glasses. The AR viewing device may display on a display of the AR viewing device, a first view perspective of the isolated anatomical model in a first orientation. The first orientation may be based on a position of the first AR viewing device relative to the body. Examples include displaying a virtual position of the medical instrument in the AR viewing device.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Inventors: William C. Harding, Martha De Cunha Maluf-Burgman, Brian Lee Bechard, Michael J. Ferguson, Patrick W. Kinzie, Ryan H. Gertenbach, Emily Clare Byrne
  • Publication number: 20200069226
    Abstract: A biocompatible medical device may include an electrochemical sensor including a common reference electrode; at least one counter electrode; and a work electrode platform comprising a plurality of respective work electrodes, each respective work electrode electrically coupled to the common reference electrode and comprising a respective reagent substrate configured to react with a respective analyte to produce a respective signal indicative of a concentration of the respective analyte; and processing circuitry operatively coupled to the electrochemical sensor, and configured to receive from the electrochemical sensor a plurality of signals from the plurality of respective work electrodes; identify the respective signal corresponding to a respective selected work electrode; and process the identified signal to determine the concentration of the respective analyte associated with the respective selected work electrode.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 5, 2020
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Publication number: 20200072782
    Abstract: An electrochemical sensor may include a common reference electrode, at least one counter electrode, and a work electrode platform including a plurality of respective work electrodes. Each respective work electrode of the plurality of respective work electrodes may be electrically coupled to the common reference electrode and include a respective reagent substrate configured to react with a respective analyte to produce a signal indicative of a concentration of the respective analyte.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 5, 2020
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Publication number: 20200038671
    Abstract: In some examples, an apparatus configured to be worn by a patient for cardiac defibrillation comprises sensing electrodes configured to sense a cardiac signal of the patient, defibrillation electrodes, therapy delivery circuitry configured to deliver defibrillation therapy to the patient via the defibrillation electrodes, communication circuitry configured to receive data of at least one physiological signal of the patient from at least one sensing device separate from the apparatus, a memory configured to store the data, the cardiac signal, and a machine learning algorithm, and processing circuitry configured to apply the machine learning algorithm to the data and the cardiac signal to probabilistically-determine at least one state of the patient and determine whether to control delivery of the defibrillation therapy based on the at least one probabilistically-determined patient state.
    Type: Application
    Filed: July 31, 2018
    Publication date: February 6, 2020
    Inventors: Randal C. Schulhauser, Jian Cao, David Probst, Daniel Hahn, Eric C. Maass, Patrick W. Kinzie
  • Publication number: 20190304585
    Abstract: A system including a range of motion, quality of sleep, overall, and control modules. The range of motion module, prior to a procedure being performed on a patient, determines a first range of motion score of the patient based on a first signal generated by a sensor. The quality of sleep module, prior to the procedure being performed on the patient, determines a first quality of sleep score or a first pain score based on the first signal. The overall module determines a combined score based on the first range of motion score and the first quality of sleep score or the first pain score. The control module compares the combined score to a predetermined threshold and predicts an outcome of the procedure based on the comparison. The control module, based on the combined score, determines whether to perform the procedure, adjust the procedure or refrain from performing the procedure.
    Type: Application
    Filed: May 13, 2019
    Publication date: October 3, 2019
    Inventors: Randal Schulhauser, Richard L. Brown, Matthew M. Morrison, Patrick W. Kinzie, Jeffrey R. VanRaaphorst, Emily C. Byrne
  • Patent number: 10339273
    Abstract: A system including a range of motion, quality of sleep, overall, and control modules. The range of motion module, prior to a procedure being performed on a patient, determines a first range of motion score of the patient based on a first signal generated by a sensor. The quality of sleep module, prior to the procedure being performed on the patient, determines a first quality of sleep score or a first pain score based on the first signal. The overall module determines a combined score based on the first range of motion score and the first quality of sleep score or the first pain score. The control module compares the combined score to a predetermined threshold and predicts an outcome of the procedure based on the comparison. The control module, based on the combined score, determines whether to perform the procedure, adjust the procedure or refrain from performing the procedure.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: July 2, 2019
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Randal Schulhauser, Richard L. Brown, Matthew M. Morrison, Patrick W. Kinzie, Jeffrey R. VanRaaphorst, Emily C. Byrne
  • Publication number: 20190090742
    Abstract: An embodiment of a sensor device includes a base substrate, a circuit pattern formed overlying the interior surface of the substrate, a physiological characteristic sensor element on the exterior surface of the substrate, conductive plug elements located in vias formed through the substrate, each conductive plug element having one end coupled to a sensor electrode, and having another end coupled to the circuit pattern, a multilayer component stack carried on the substrate and connected to the circuit pattern, the stack including features and components to provide processing and wireless communication functionality for sensor data obtained in association with operation of the sensor device, and an enclosure structure coupled to the substrate to enclose the interior surface of the substrate, the circuit pattern, and the stack.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 28, 2019
    Inventors: Daniel Hahn, David Probst, Randal Schulhauser, Mohsen Askarinya, Patrick W. Kinzie, Thomas P. Miltich, Mark D. Breyen, Santhisagar Vaddiraju