Patents by Inventor Patrick W. Lunsford

Patrick W. Lunsford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150293217
    Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse compression radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulse compression radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 15, 2015
    Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
  • Patent number: 8786488
    Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse compression radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulse compression radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 22, 2014
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
  • Patent number: 8742975
    Abstract: A system for measuring range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated signal compression radar system. The reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The signal compression radar system transmits signals coordinated by the backscatter state of the tag and creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar signals between the radar system and the RFID tag. The radar may use signals typical of pulse compression radar systems such as chirp modulation or Orthogonal Frequency Domain Modulation (OFDM), either pulsed or semi-continuous.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: June 3, 2014
    Assignee: Amtech Systems, LLC
    Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
  • Publication number: 20120127021
    Abstract: A system for measuring range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated signal compression radar system. The reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The signal compression radar system transmits signals coordinated by the backscatter state of the tag and creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar signals between the radar system and the RFID tag. The radar may use signals typical of pulse compression radar systems such as chirp modulation or Orthogonal Frequency Domain Modulation (OFDM), either pulsed or semi-continuous.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Applicant: TC LICENSE LTD.
    Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford
  • Publication number: 20110309969
    Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse compression radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulse compression radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicant: TC LICENSE LTD.
    Inventors: Kelly Gravelle, Jeremy Landt, Patrick W. Lunsford