Patents by Inventor Patrick W. Quinn

Patrick W. Quinn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7085281
    Abstract: A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: August 1, 2006
    Assignee: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Deven Anthony, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 6973271
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: December 6, 2005
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20030086140
    Abstract: Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 8, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Joe Caltagirone, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20030016692
    Abstract: A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
    Type: Application
    Filed: October 26, 2001
    Publication date: January 23, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Deven Anthony, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20030011849
    Abstract: A return path system includes inserting RF packets between regular upstream data packets, where the data packets are generated by communication devices such as a computer or internet telephone. The RF packets can be derived from analog RF signals that are produced by legacy video service terminals. In this way, the present invention can provide an RF return path for legacy terminals that shares a return path for regular data packets in an optical network architecture. The invention operates independently of a legacy upstream transmission timing scheme so that the legacy upstream transmission timing scheme can remain effective in preventing data collisions. In other embodiments, the present invention allows for less complex hardware for subscribers that are not taking data services. Further, an optical signal present line in combination with a driver may be employed in order to reduce the amount of hardware in a laser transceiver node.
    Type: Application
    Filed: January 8, 2002
    Publication date: January 16, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Deven J. Anthony
  • Publication number: 20020089725
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Application
    Filed: October 4, 2001
    Publication date: July 11, 2002
    Applicant: Wave7 Optics, Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey, Patrick W. Quinn, John J. Kenny, Emmanuel A. Vella, Thomas A. Tighe
  • Publication number: 20020039218
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off the shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: July 5, 2001
    Publication date: April 4, 2002
    Applicant: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella