Patents by Inventor Patrick Wiegand

Patrick Wiegand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200124478
    Abstract: An improved method for integrating curve peaks as compared to techniques such as the trapezoidal rule wherein integration parameters are at fixed x-axis positions. Integration parameters are instead specified relative to a peak center, which allows the peak to shift over time due to hardware changes, temperature fluctuation, pressure changes, etc., while maintaining integration parameters at optimal locations for that peak. As such, the present disclosure finds particular utility in spectroscopy wherein, in the case of Raman spectroscopy, for example, specific wavenumber shift locations may drift over time, leading to inaccurate results based upon absolute integration parameters.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Inventor: Patrick Wiegand
  • Patent number: 10627289
    Abstract: An improved method for integrating curve peaks as compared to techniques such as the trapezoidal rule wherein integration parameters are at fixed x-axis positions. Integration parameters are instead specified relative to a peak center, which allows the peak to shift over time due to hardware changes, temperature fluctuation, pressure changes, etc., while maintaining integration parameters at optimal locations for that peak. As such, the present disclosure finds particular utility in spectroscopy wherein, in the case of Raman spectroscopy, for example, specific wavenumber shift locations may drift over time, leading to inaccurate results based upon absolute integration parameters.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: April 21, 2020
    Assignee: Kaiser Optical Systems Inc.
    Inventor: Patrick Wiegand
  • Patent number: 10260942
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 16, 2019
    Assignee: Kaiser Optical Systems Inc.
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White
  • Publication number: 20180328785
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the present disclosure may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the present disclosure, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Application
    Filed: July 24, 2018
    Publication date: November 15, 2018
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White, Darren Schipper
  • Patent number: 10048128
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: August 14, 2018
    Assignee: KAISER OPTICAL SYSTEMS INC.
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White, Darren Schipper
  • Publication number: 20170241837
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Application
    Filed: May 5, 2017
    Publication date: August 24, 2017
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White
  • Publication number: 20160356646
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 8, 2016
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White
  • Publication number: 20160356647
    Abstract: Methods and systems for spectrometer dark correction are described which achieve more stable baselines, especially towards the edges where intensity correction magnifies any non-zero results of dark subtraction, and changes in dark current due to changes in temperature of the camera window frame are typically more pronounced. The resulting induced curvature of the baseline makes quantitation difficult in these regions. Use of the invention may provide metrics for the identification of system failure states such as loss of camera vacuum seal, drift in the temperature stabilization, and light leaks. In system aspects of the invention, a processor receives signals from a light detector in the spectrometer and executes software programs to calculate spectral responses, sum or average results, and perform other operations necessary to carry out the disclosed methods. In most preferred embodiments, the light signals received from a sample are used for Raman analysis.
    Type: Application
    Filed: November 24, 2015
    Publication date: December 8, 2016
    Inventors: Patrick Wiegand, James M. Tedesco, Joseph B. Slater, Francis Esmonde-White, Darren Schipper
  • Publication number: 20150339262
    Abstract: Raw data inputs are treated as independent signal sources to reduce computational lag without adversely affecting signal-to-noise ratio (SNR). Applications include spectroscopy, multiple linear regression, mass balance quantitation and the calculation of physical properties. The input-specific averaging has been applied to Raman spectroscopy, where the inputs are averaged spectra from which peak heights or areas are obtained from integration. Alternatively, peak areas or heights can be obtained from unaveraged spectra and are then averaged before use in further calculations as inputs to produce a desired output. The output(s) are linear or nonlinear combinations of the peak heights or areas, coupled with weighting factors which relate the raw inputs to a quantitative output such as concentration of a chemical species. Each specific input can use a different type of averaging. The overall goal may be optimization for best precision, and/or optimization for minimum lag time.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 26, 2015
    Applicant: KAISER OPTICAL SYSTEMS INC.
    Inventors: Patrick Wiegand, Ronald C. Fairchild