Patents by Inventor Patrick Zeng Dong

Patrick Zeng Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10943168
    Abstract: A system may include a decentralized communication network and multiple processing devices on the network. Each processing device may have an artificial intelligence (AI) chip, the device may be configured to generate an AI model, determine the performance value of the AI model on the AI chip, receive a chain from the network where the chain contains a performance measure. If the performance value of the AI model is better than the performance measure, then the processing device may broadcast the AI model to the network for verification. If the AI model is verified by the network, the device may update the chain with the performance value so that the chain can be shared by the multiple processing devices on the network. Any processing device on the network may also verify an AI model broadcasted by any other device. Methods for generating the AI model are also provided.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: March 9, 2021
    Assignee: Gyrfalcon Technology Inc.
    Inventors: Lin Yang, Charles Jin Young, Jason Zeng Dong, Patrick Zeng Dong, Baohua Sun, Yequn Zhang
  • Patent number: 10902313
    Abstract: A system may include a decentralized communication network and multiple processing devices on the network. Each processing device may have an artificial intelligence (AI) chip, the device may be configured to generate an AI model, determine the performance value of the AI model on the AI chip, receive a chain from the network where the chain contains a performance measure. If the performance value of the AI model is better than the performance measure, then the processing device may broadcast the AI model to the network for verification. If the AI model is verified by the network, the device may update the chain with the performance value so that the chain can be shared by the multiple processing devices on the network. Any processing device on the network may also verify an AI model broadcasted by any other device. Methods for generating the AI model are also provided.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 26, 2021
    Assignee: Gyrfalcon Technology Inc.
    Inventors: Lin Yang, Charles Jin Young, Jason Zeng Dong, Patrick Zeng Dong, Baohua Sun, Yequn Zhang
  • Publication number: 20200320385
    Abstract: A system for training an artificial intelligence (AI) model for an AI chip may include a forward network and a backward propagation network. The AI model may be a convolution neural network (CNN). The forward network may infer the output of the AI chip based on the training data. The backward network may use the output of the AI chip and the ground truth data to train the weights of the AI model. In some examples, the system may train the AI model using a gradient descent method. The system may quantize the weights and update the weights during the training. In some examples, the system may perform a uniform quantization over the weights. The system may also determine the distribution of the weights. If the weight distribution is not symmetric, the system may group the weights and quantize the weights based on the grouping.
    Type: Application
    Filed: April 30, 2019
    Publication date: October 8, 2020
    Applicant: Gyrfalcon Technology Inc.
    Inventors: Lin Yang, Baohua Sun, Yongxiong Ren, Wenhan Zhang, Patrick Zeng Dong
  • Publication number: 20190311246
    Abstract: A system may include a decentralized communication network and multiple processing devices on the network. Each processing device may have an artificial intelligence (AI) chip, the device may be configured to generate an AI model, determine the performance value of the AI model on the AI chip, receive a chain from the network where the chain contains a performance measure. If the performance value of the AI model is better than the performance measure, then the processing device may broadcast the AI model to the network for verification. If the AI model is verified by the network, the device may update the chain with the performance value so that the chain can be shared by the multiple processing devices on the network. Any processing device on the network may also verify an AI model broadcasted by any other device. Methods for generating the AI model are also provided.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Applicant: GYRFALCON TECHNOLOGY INC.
    Inventors: Lin Yang, Charles Jin Young, Jason Zeng Dong, Patrick Zeng Dong, Baohua Sun, Yequn Zhang
  • Publication number: 20190311247
    Abstract: A system may include a decentralized communication network and multiple processing devices on the network. Each processing device may have an artificial intelligence (AI) chip, the device may be configured to generate an AI model, determine the performance value of the AI model on the AI chip, receive a chain from the network where the chain contains a performance measure. If the performance value of the AI model is better than the performance measure, then the processing device may broadcast the AI model to the network for verification. If the AI model is verified by the network, the device may update the chain with the performance value so that the chain can be shared by the multiple processing devices on the network. Any processing device on the network may also verify an AI model broadcasted by any other device. Methods for generating the AI model are also provided.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Applicant: GYRFALCON TECHNOLOGY INC.
    Inventors: Lin Yang, Charles Jin Young, Jason Zeng Dong, Patrick Zeng Dong, Baohua Sun, Yequn Zhang