Patents by Inventor Pau Farré Pérez

Pau Farré Pérez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11900216
    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: February 13, 2024
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: James A. King, William W. Bernoudy, Kelly T. R. Boothby, Pau Farré Pérez
  • Publication number: 20230316094
    Abstract: A heuristic solver is wrapped in a meta algorithm that will perform multiple sub-runs within the desired time limit, and expand or reduce the effort based on the time it has taken so far and the time left. The goal is to use the largest effort possible as this typically increases the probability of success. In another implementation, the meta algorithm iterates the time-like parameter from a small value, and determine the next test-value so as to minimize time to target collecting data at large effort only as necessary. The meta algorithm evaluates the energy of the solutions obtained to determine whether to increase or decrease the value of the time-like parameter. The heuristic algorithm may be Simulated Annealing, the heuristic algorithm may run on a quantum processor, including a quantum annealing processor or a gate-model quantum processor.
    Type: Application
    Filed: March 27, 2023
    Publication date: October 5, 2023
    Inventors: Pau Farré Pérez, Jack R. Raymond
  • Publication number: 20230169378
    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.
    Type: Application
    Filed: November 16, 2022
    Publication date: June 1, 2023
    Inventors: James A. King, William W. Bernoudy, Kelly T. R. Boothby, Pau Farré Pérez
  • Patent number: 11537926
    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: December 27, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: James A. King, William W. Bernoudy, Kelly T. R. Boothby, Pau Farré Pérez
  • Publication number: 20200234172
    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 23, 2020
    Inventors: James A. King, William W. Bernoudy, Kelly T. R. Boothby, Pau Farré Pérez