Patents by Inventor Paul A. Haefner

Paul A. Haefner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7218966
    Abstract: An arrhythmia discrimination device and method involves receiving electrocardiogram signals and non-electrophysiologic signals at subcutaneous locations. Both the electrocardiogram-signals and non-electrophysiologic signals are used to discriminate between normal sinus rhythm and an arrhythmia. An arrhythmia may be detected using electrocardiogram signals, and verified using the non-electrophysiologic signals. A detection window may be initiated in response to receiving the electrocardiogram signal, and used to determine whether the non-electrophysiologic signal is received at a time falling within the detection window. Heart rates may be computed based on both the electrocardiogram signals and non-electrophysiologic signals. The rates may be used to discriminate between normal sinus rhythm and arrhythmia, and used to determining absence of an arrhythmia.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: May 15, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Paul Haefner
  • Patent number: 7203543
    Abstract: A method and device provide for determining capture in multiple chambers of a patient's heart using an electrode inserted into a coronary vein of the patient's heart. The coronary vein electrode is positioned adjacent to multiple heart chambers and is responsive to cardiac signals originating in the multiple chambers. The coronary vein electrode may be coupled to a single sense amplifier to detect the cardiac signals. Pace pulses may be applied to multiple heart chambers simultaneously or according to a phased timing sequence. Cardiac signals responsive to the pace pulses sensed using the coronary vein electrode may be used to verify capture in the multiple chambers of the heart.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: April 10, 2007
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott A. Meyer, Haris J. Sih, Paul A. Haefner
  • Publication number: 20060224188
    Abstract: A neural stimulator senses a reference signal indicative of cardiac cycles each including a predetermined type timing reference event using a sensor external to the heart and blood vessels. The delivery of the neural stimulation pulses are synchronized to that timing reference event. Examples of the timing reference event include a predetermined cardiac event such as a P-wave or an R-wave detected from a subcutaneous ECG signal, a predetermined type heart sound detected from an acoustic signal, and a peak detected from a hemodynamic signal related to blood flow or pressure.
    Type: Application
    Filed: April 5, 2005
    Publication date: October 5, 2006
    Inventors: Imad Libbus, Paul Haefner, Aaron McCabe, Yi Zhang
  • Patent number: 7117035
    Abstract: A system includes a housing with energy delivery circuitry and detection circuitry. One or more electrodes are coupled to the circuitry and used to sense cardiac and muscle activity. A processor is coupled to the energy delivery and detection circuitry. The processor may detect a ventricular arrhythmia using a cardiac signal developed from the sensed cardiac activity and may also detect an activity state of the patient using an activity signal developed from the sensed muscle activity. The processor modifies delivery of a therapy to treat the arrhythmia in response to the activity signal. A method involves detecting signals using subcutaneous electrodes, and discerning a cardiac signal and a patient activity signal from the detected signals. Arrhythmia therapy may be modified to treat the arrhythmia in response to the activity signal.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: October 3, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Darrell Orvin Wagner, Paul Haefner
  • Publication number: 20060167502
    Abstract: Cardiac sensing and/or stimulation devices and methods that adapt to implant location and positioning, and may employ automated vector selection from multiple electrodes. Devices include a housing having a first face opposing a second face, and an edge extending around the perimeter. A pulse generator and controller are coupled to three or more electrodes. Electrode arrangement facilitates selection of the particular electrodes that sense cardiac activity irrespective of one or more of positioning of the device, rotation of the housing, and which of the first and second faces of the housing is orientated toward the patient's skin. A first vector may be selected that provides for sensing cardiac activity, and a second vector may sense skeletal muscle activity. The vectors may be selected based on amplitude or signal-to-noise ratio exceeding a predetermined threshold. Methods may involve delivering defibrillation or cardioversion energy and/or determining cardiac rhythm states using selected vectors.
    Type: Application
    Filed: December 21, 2004
    Publication date: July 27, 2006
    Inventor: Paul Haefner
  • Publication number: 20060095082
    Abstract: The present invention provides methods and systems for tachyarrhythmia therapy involving pacing the heart to prior to the application of a cardioversion/defibrillation shock. One or more pace pulses are delivered to the arrhythmic chamber or chambers. The pace pulses may be delivered to the heart at an adaptable rate selected to organize the electrical activity of the heart. If the pace pulses produce capture, cardioversion/defibrillation stimulation is delivered.
    Type: Application
    Filed: December 14, 2005
    Publication date: May 4, 2006
    Inventors: Haris Sih, Scott Meyer, Paul Haefner
  • Patent number: 6944499
    Abstract: A cardiac rhythm management device that utilizes blanking or refractory periods to avoid misidentification of artifacts and evoked potentials, wherein the refractory periods are discontinuous and may be dependent upon sensed events, expiration of a predefined timing interval, or stimulation events in the same or other chambers of the heart. The discontinuous refractory periods enhance the ability of the device to sense intrinsic events. The present invention includes separate refractory and floating refractory periods incorporated within the sensing protocol for each selected cycle, thereby increasing the time period for normal sensing.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: September 13, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Zhengnian Tang, Julio C. Spinelli, Jeffrey E. Stahmann, Rene H. Wentkowski, Andrew P. Kramer, Paul A. Haefner
  • Publication number: 20050131478
    Abstract: Methods and devices for classifying a cardiac pacing response involve using a first electrode combination for pacing and a second electrode combination for sensing a cardiac signal following pacing. The cardiac response to pacing may be classified using the sensed cardiac signal. One process involves using the sensed cardiac signal to detect the cardiac response as a fusion/pseudofusion beat. Another process involves using the sensed cardiac signal to classify the cardiac response to pacing as one of at least three cardiac response types.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Inventors: Jaeho Kim, Joseph Bocek, Scott Meyer, Paul Haefner, Haris Sih
  • Publication number: 20050131476
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a plurality of classification windows relative to and following a pacing pulse. One or more characteristics of a cardiac signal sensed following the pacing pulse are detected within one or more particular classification windows. The characteristics may be compared to one or more references. Classification of the cardiac response may be performed based on the comparison of the one or more characteristics to the one or more references and the particular classification windows in which the one or more characteristics are detected.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 16, 2005
    Inventors: Jaeho Kim, Joseph Bocek, Scott Meyer, Paul Haefner, Haris Sih
  • Publication number: 20050119708
    Abstract: A cardiac monitoring and/or stimulation system includes a housing coupled to a plurality of electrodes configured for subcutaneous non-intrathoracic sensing. A signal processor receives a plurality of composite signals associated with a plurality of sources, separates a signal from the plurality of composite signals, and identifies the separated signal as a cardiac signal using information derived from a non-electrophysiologic sensor, such as an accelerometer or acoustic transducer. The signal processor may iteratively correlate separated signals from the plurality of composite signals with a non-electrophysiologic sensor signal until the cardiac signal is identified.
    Type: Application
    Filed: February 23, 2004
    Publication date: June 2, 2005
    Inventor: Paul Haefner
  • Publication number: 20050038350
    Abstract: Cardiac methods and devices that separate signals using at least two composite signals acquired at least at two input impedances. A target source impedance may be selected, and a cardiac signal may be separated from composite signals using the selected target source impedance. Medical systems include a cardiac device having a housing that provides amplification circuitry configured to have a first amplifier input impedance and a second amplifier input impedance, such as using two separate circuits or switching between two input impedances. One or more electrode assemblies are coupled to the amplification circuitry. A signal processor is provided in the housing configured to separate a source signal using a first composite signal detected at the first input impedance and a second composite signal detected at the second input impedance. The phase response of the first input amplifier circuit is about equal to that of the second input amplifier circuit.
    Type: Application
    Filed: April 8, 2004
    Publication date: February 17, 2005
    Inventors: Apurv Kamath, Darrell Wagner, Paul Haefner, Marina Brockway
  • Publication number: 20040230249
    Abstract: Cardiac monitoring and stimulation methods and systems provide audio playback of cardiac events and transthoracic monitoring and therapy. A medical system includes a housing and electrodes configured for sensing cardiac electrical activity. Another sensor may be configured to sense heart movement and produce a signal in response, such as an audio signal. Memory stores the audio signal and the cardiac electrical signal. A controller and communications circuitry telemeter the cardiac electrical signal and the audio signal to a patient-external device. Useful sensors include, accelerometers, piezoelectric transducers, and microphones situated in or on the housing or lead. Energy delivery circuitry may deliver cardiac therapy. The device may further include a patient actuatable trigger configured to communicate to the controller via the communications circuitry. The controller may initiate storing of the cardiac electrical signal and the audio signal in response to the trigger.
    Type: Application
    Filed: March 15, 2004
    Publication date: November 18, 2004
    Inventor: Paul Haefner
  • Publication number: 20040230229
    Abstract: A cardiac sensing and stimulation system includes a housing within which energy delivery circuitry and detection circuitry are provided. Subcutaneous electrodes are coupled to the energy delivery and detection circuitry and arranged in a non-contacting relationship with respect to cardiac tissue, great vessels, and coronary vasculature. A lead system is coupled to the energy delivery and detection circuitry. The lead system electrodes are configured to contact cardiac tissue, great vessels, or coronary vasculature. A controller, provided in the housing, is coupled to the energy delivery and detection circuitry. The controller configures the system to operate in a first mode using at least the subcutaneous electrodes, and to operate in a second mode using at least the lead electrodes. The controller can selectively switch between the first and second modes, and selectively enable and disable components and circuitry associated with the first and second modes and combinations of these modes.
    Type: Application
    Filed: June 13, 2003
    Publication date: November 18, 2004
    Inventors: Eric G. Lovett, Mike Favet, Adam W. Cates, Kristine M. Larsen-Kelly, Paul Haefner, F. Roosevelt Gilliam
  • Publication number: 20040230274
    Abstract: An implantable subcutaneous device includes a lead and electrode for cardiac monitoring and intervention. The device has an implantable lead including a lead body, a subcutaneous electrode supported by the lead body and a pharmacological agent impelled from the device using phoresis. The pharmacological agent provides a therapeutic treatment to subcutaneous non-intrathoracic tissue. A method of implanting subcutaneous leads involves providing a lead including a lead body, a subcutaneous electrode, and a pharmacological agent and using phoresis to impel the pharmacological agent into subcutaneous non-intrathoracic tissue surrounding the lead.
    Type: Application
    Filed: December 4, 2003
    Publication date: November 18, 2004
    Inventors: Ron Heil, Paul A. Haefner, Adam W. Cates, Darrell Orvin Wagner, Curtis Charles Lindstrom
  • Publication number: 20040230129
    Abstract: An arrhythmia discrimination device and method involves receiving electrocardiogram signals and non-electrophysiologic signals at subcutaneous locations. Both the electrocardiogram-signals and non-electrophysiologic signals are used to discriminate between normal sinus rhythm and an arrhythmia. An arrhythmia may be detected using electrocardiogram signals, and verified using the non-electrophysiologic signals. A detection window may be initiated in response to receiving the electrocardiogram signal, and used to determine whether the non-electrophysiologic signal is received at a time falling within the detection window. Heart rates may be computed based on both the electrocardiogram signals and non-electrophysiologic signals. The rates may be used to discriminate between normal sinus rhythm and arrhythmia, and used to determining absence of an arrhythmia.
    Type: Application
    Filed: March 19, 2004
    Publication date: November 18, 2004
    Inventor: Paul Haefner
  • Publication number: 20040230243
    Abstract: Implementing a subcutaneous medical electrode system involves positioning a number of electrode subsystems in relation to a heart so that noise cancellation provides an improved signal to noise ratio of the cardiac signal and/or to provide one electrode arrangement preferential for cardiac signals and another arrangement preferential for noise signals. One of the electrode subsystems so positioned may include one or more can electrodes located on a housing enclosing a medical device. The medical device may be configured to provide therapeutic, diagnostic, or monitoring functions, including, for example, cardiac arrhythmia therapy.
    Type: Application
    Filed: December 17, 2003
    Publication date: November 18, 2004
    Inventors: Paul Haefner, Darrell Orvin Wagner, Jason Alan Shiroff, Marina Brockway, Apurv Kamath
  • Publication number: 20040220629
    Abstract: Cardiac systems and methods using ECG and blood information for arrhythmia detection and discrimination. Detection circuitry is configured to produce an ECG. An implantable blood sensor configured to produce a blood sensor signal is coupled to a processor. The processor is coupled to the detection and energy delivery circuitry, and used to evaluate and treat cardiac rhythms using both the cardiac electrophysiologic and blood sensor signals. The blood sensor is configured for subcutaneous non-intrathoracic placement and provided in or on the housing, on a lead coupled to the housing, and/or separate to the housing and coupled to the processor via hardwire or wireless link. The blood sensor may be configured for optical sensing, using a blood oxygen saturation sensor or pulse oximeter. A cardiac rhythm may be evaluated using the electrocardiogram signal and the blood sensor signal, and tachyarrhythmias may be treated after confirmation using the blood sense signal.
    Type: Application
    Filed: April 2, 2004
    Publication date: November 4, 2004
    Inventors: Apurv Kamath, Paul Haefner, Darrell Orvin Wagner, Marina Brockway
  • Publication number: 20040220633
    Abstract: A system includes a housing with energy delivery circuitry and detection circuitry. One or more electrodes are coupled to the circuitry and used to sense cardiac and muscle activity. A processor is coupled to the energy delivery and detection circuitry. The processor may detect a ventricular arrhythmia using a cardiac signal developed from the sensed cardiac activity and may also detect an activity state of the patient using an activity signal developed from the sensed muscle activity. The processor modifies delivery of a therapy to treat the arrhythmia in response to the activity signal. A method involves detecting signals using subcutaneous electrodes, and discerning a cardiac signal and a patient activity signal from the detected signals. Arrhythmia therapy may be modified to treat the arrhythmia in response to the activity signal.
    Type: Application
    Filed: April 1, 2004
    Publication date: November 4, 2004
    Inventors: Darrell Orvin Wagner, Paul Haefner
  • Publication number: 20040215240
    Abstract: A reconfigurable cardiac device includes a housing, and detection circuitry and energy delivery circuitry provided in the housing. One or more subcutaneous, non-intrathoracic electrodes are coupled to the energy delivery and detection circuitry. A lead interface is provided on the housing and coupled to the energy delivery and detection circuitry. The lead interface is configured to receive at least one lead that includes one or more intrathoracic lead electrodes. A controller is provided in the housing and coupled to the lead interface and the energy delivery and detection circuitry. The system is operable in a first configuration using the subcutaneous electrodes in the absence of the lead and operable in a second configuration using at least one or more of the lead electrodes. The system is capable of providing cardiac activity sensing and stimulation in each of the first and second system configurations, respectively.
    Type: Application
    Filed: April 8, 2004
    Publication date: October 28, 2004
    Inventors: Eric G. Lovett, Mike Favet, Adam W. Cates, Kristine M. Larsen-Kelly, Paul Haefner, Richard S. Sanders
  • Publication number: 20040204728
    Abstract: Ultrasonic dissection instruments and methods provide for fluid delivery during subcutaneous dissection. An ultrasonic dissection tool includes a handle, a transducer and a dissecting member. The dissecting member extends from the distal end of the transducer, and a fluid channel system extends from at least the proximal end to the distal end of the dissecting member. The fluid channel system terminates in a port system. The port system may include one or more apertures, one or more channels, and be adapted to transport fluids such as, for example, irrigation fluids, fluids having analgesics, antibiotics, and combinations of fluids and agents.
    Type: Application
    Filed: September 2, 2003
    Publication date: October 14, 2004
    Inventor: Paul Haefner