Patents by Inventor Paul A. Hoisington

Paul A. Hoisington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200009788
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Applicant: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Patent number: 10500789
    Abstract: A system for de-powdering one or more objects within a powder print bed comprises a build box configured to contain the powder print bed, and a de-powdering subsystem configured to engage the build box. The de-powdering subsystem comprises a vacuum device configured to withdraw loose powder agitated by the air jet device, and a robotic arm configured to convey the vacuum device to one or more locations on the powder print bed. The system may further comprise an air jet device disposed on the robotic arm, the air jet device configured to agitate, with a jet of air, unbound powder within the powder print bed. The system may further comprise a mechanical agitation instrument configured to facilitate agitation of the unbound powder within the powder print bed. The mechanical agitation instrument may be used in conjunction with one or both of the vacuum device and the air jet device.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: December 10, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Ricardo Fulop, Robert Michael Shydo, Jr., Jonah Samuel Myerberg, Charles Edward Martin, Justin Cumming, Paul Hoisington, Emanuel M. Sachs
  • Patent number: 10486363
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: November 26, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Patent number: 10406751
    Abstract: A system for separating objects within a stacked powder print bed of nested objects comprises a build box configured to contain the powder print bed. The build box has a build box top and a build box floor. The system further includes an elongated aperture formed in a side wall of the build box, and a de-powdering subsystem configured to mechanically and electrically engage the build box. A separating blade associated with the de-powdering subsystem is configured to be inserted through the elongated aperture and into the powder print bed between a top-most print bed layer of the nested objects and a second print bed layer directly below and contiguous with the top-most layer, thereby forming an isolated powder print bed between the separating blade and the build box top. The unbound powder may be agitated by various techniques and subsequently removed from the objects.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: September 10, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Ricardo Fulop, Robert Michael Shydo, Jonah Samuel Myerberg, Charles Edward Martin, Justin Cumming, Paul Hoisington, Emanuel M. Sachs, George Hudelson, Daniel Sachs, Jamison Go, Eric Wong, Alexander K. McCalmont
  • Publication number: 20190210277
    Abstract: Devices, systems, and methods are directed to the use of vapor phase change in binder jetting processes for forming three-dimensional objects. In general, a vapor of a first fluid may be directed to a layer of a powder spread across a build volume. The vapor may condense to reduce mobility of the particles of the powder of the layer. For example, the condensing vapor may reduce the likelihood of particle ejection from the layer and, thus, may reduce the likelihood of clogging or otherwise degrading a printhead used to jet a second fluid (e.g., a binder) to the layer. Further, or instead, the condensing vapor may increase the density of the powder in the layer which, when repeated over a plurality of layers forming a three-dimensional object, may reduce the likelihood of slumping of the part during sintering.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 11, 2019
    Inventors: Emanuel Michael Sachs, George Hudelson, Paul A. Hoisington, Christopher Benjamin Renner, Keith Roy Vaillancourt, Edward Russell Moynihan
  • Patent number: 10308054
    Abstract: A fluid ejection module mounting apparatus, including a module mount having a horizontal portion and a vertical portion, a fluid ejection module mounted to the module mount, and a clamp assembly including a recessed portion, a clamp along a wall of the recessed portion, and a lever coupled to the clamp and configured to move the clamp from an open position to a closed position. The horizontal portion has an opening configured to receive a fluid ejection module and the vertical portion has a protruding portion. The protruding portion of the module mount is configured to mate with the recessed portion of the clamp assembly.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: June 4, 2019
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Kevin Von Essen, Paul A. Hoisington, Michael Rocchio
  • Patent number: 10201854
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. The magnetohydrodynamic force can be pulsed to eject droplets of the liquid metal to provide control over accuracy of the object being fabricated. The pulsations can be applied in fluid chambers having high resonance frequencies such that droplet ejection can be effectively controlled over a wide range of frequencies, including high frequencies suitable for liquid metal ejection at rates suitable for commercially viable three-dimensional fabrication.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: February 12, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, Mark Gardner Gibson, Paul A. Hoisington, Richard Remo Fontana
  • Publication number: 20190022942
    Abstract: A system for de-powdering one or more objects within a powder print bed comprises a build box configured to contain the powder print bed, and a de-powdering subsystem configured to engage the build box. The de-powdering subsystem comprises a vacuum device configured to withdraw loose powder agitated by the air jet device, and a robotic arm configured to convey the vacuum device to one or more locations on the powder print bed. The system may further comprise an air jet device disposed on the robotic arm, the air jet device configured to agitate, with a jet of air, unbound powder within the powder print bed. The system may further comprise a mechanical agitation instrument configured to facilitate agitation of the unbound powder within the powder print bed.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 24, 2019
    Inventors: Ricardo Fulop, Robert Michael Shydo, JR., Jonah Samuel Myerberg, Charles Edward Martin, Justin Cumming, Paul Hoisington, Emanuel M. Sachs
  • Publication number: 20180304358
    Abstract: The devices, systems, and methods of the present disclosure are directed to dispensing powder for rapid and accurate layer-by-layer fabrication of three-dimensional objects formed through binder jetting. More specifically, a powder may be dispensed from a hopper movable over a volume defined by a powder box to facilitate, for example, rapidly delivering powder in front of a spreader movable across the volume to spread the powder into a layer. The hopper may include a plurality of dispensing rollers along a dispensing region of the hopper. The dispensing rollers may be rotatable relative to one another to control dispensing the powder from the hopper to an area in front of the spreader, reducing wasted motion associated with moving a spreader to retrieve powder from a stationary powder supply and reducing the likelihood of inadvertently delivering powder from the hopper to unintended areas.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Paul A. Hoisington, Emanuel Michael Sachs, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, Brett Schuster, George Hudelson
  • Publication number: 20180304367
    Abstract: The devices, systems, and methods of the present disclosure are directed to spreading powder to facilitate accurate layer-by-layer fabrication of three-dimensional objects formed through binder jetting. More specifically, a spreader may be moved across a volume defined by a powder box to spread the powder in a layer. As the spreader is moved across the volume, the spreader may vibrate to pack the powder in the volume. By applying this vibration to the powder on a layer-by-layer basis, the resulting three-dimensional object formed through the binder jetting process may have improved density. In turn, such improved density may be useful for forming the three-dimensional objects into finished parts meeting target density standards, which may be particularly useful in the fabrication of metal parts. Further, or instead, applying vibration to the powder may reduce the likelihood of layer-to-layer variations in the three-dimensional object, thus reducing the likelihood of defects in finished parts.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Paul A. Hoisington, Emanuel Michael Sachs, Michael Andrew Gibson, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, Brett Schuster
  • Publication number: 20180304357
    Abstract: The devices, systems, and methods of the present disclosure are directed to thermal energy delivery to facilitate rapid layer-by-layer fabrication of three-dimensional objects formed through binder jetting. More specifically, a powder may be spread to form a layer along a volume defined by a powder box, a binder may be deposited along the layer to form a layer of a three-dimensional object, and the direction of spreading the layer and depositing the binder may be in a first direction and in a second direction, different from the first direction, thus facilitating rapid formation of the three-dimensional object. Thermal energy may be delivered to each layer in the first and second directions to dry or otherwise change the binder and/or the powder to reduce the likelihood of distorting the binder in a given layer as a subsequent layer is rapidly formed over the given layer.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Paul A. Hoisington, Emanuel Michael Sachs, Anastasios John Hart, Keith Vaillancourt, Steven Garrant, Brett Schuster
  • Publication number: 20180297284
    Abstract: A system for separating objects within a stacked powder print bed of nested objects comprises a build box configured to contain the powder print bed. The build box has a build box top and a build box floor. The system further includes an elongated aperture formed in a side wall of the build box, and a de-powdering subsystem configured to mechanically and electrically engage the build box. A separating blade associated with the de-powdering subsystem is configured to be inserted through the elongated aperture and into the powder print bed between a top-most print bed layer of the nested objects and a second print bed layer directly below and contiguous with the top-most layer, thereby forming an isolated powder print bed between the separating blade and the build box top. The unbound powder may be agitated by various techniques and subsequently removed from the objects.
    Type: Application
    Filed: February 9, 2018
    Publication date: October 18, 2018
    Inventors: Ricardo Fulop, Robert Michael Shydo, JR., Jonah Samuel Myerberg, Charles Edward Martin, Justin Cumming, Paul Hoisington, Emanuel M. Sachs, George Hudelson, Daniel Sachs, Jamison Go, Eric Wong, Alexander K. McCalmont
  • Publication number: 20180022093
    Abstract: A fluid ejector includes a fluid ejection module having a substrate and a layer separate from the substrate. The substrate includes a plurality of fluid ejection elements arranged in a matrix, each fluid ejection element configured to cause a fluid to be ejected from a nozzle. The layer separate from the substrate includes a plurality of electrical connections, each electrical connection adjacent to a corresponding fluid ejection element.
    Type: Application
    Filed: October 2, 2017
    Publication date: January 25, 2018
    Inventors: Andreas Bibl, Kevin von Essen, Paul A. Hoisington
  • Patent number: 9776408
    Abstract: A fluid ejector includes a fluid ejection module having a substrate and a layer separate from the substrate. The substrate includes a plurality of fluid ejection elements arranged in a matrix, each fluid ejection element configured to cause a fluid to be ejected from a nozzle. The layer separate from the substrate includes a plurality of electrical connections, each electrical connection adjacent to a corresponding fluid ejection element.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: October 3, 2017
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Andreas Bibl, Kevin von Essen, Paul A. Hoisington
  • Publication number: 20170252823
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Nozzles associated with these devices, systems, and methods include one or more non-wetting surfaces in the vicinity of a discharge orifice of the nozzle. Such non-wetting surfaces can reduce the likelihood that wetting of the liquid metal in the vicinity of a discharge orifice of a nozzle will interfere with ejection of liquid metal droplets from the discharge orifice and, thus, can facilitate delivering droplets with accuracy suitable for commercially viable manufacturing using liquid metal to fabricate objects.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Emanuel Michael Sachs, Paul A. Hoisington
  • Publication number: 20170252809
    Abstract: Devices, systems, and methods are directed to adjusting a pneumatic circuit associated with pneumatic ejection of liquid metal from a nozzle as the nozzle moves along a controlled three-dimensional pattern to fabricate a three-dimensional object. The adjustment of the pneumatic circuit can facilitate adjusting a pressure profile within the nozzle as pressurized gas moves through the nozzle to eject, through pneumatic force, liquid metal from the nozzle. Through adjustment of the pneumatic circuit, characteristics of the liquid metal (e.g., size, shape, and flow rate) can be controlled to facilitate control over fabrication of the three-dimensional object.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Jonah Samuel Myerberg, Toshana Krishna Natchurivalapil Rappai James, Emanuel Michael Sachs, Paul A. Hoisington, Kevin Michael Li
  • Publication number: 20170252811
    Abstract: Devices, systems, and methods are directed to switching between pneumatically actuated ejection and electrically actuated ejection of liquid metal from a nozzle moving along a controlled three-dimensional pattern to fabricate a three-dimensional object. Electrically actuated ejection can be useful, for example, for delivering discrete droplets in areas of the object requiring a high degree of accuracy. Pneumatic ejection can be useful, for example, for delivering a stream of liquid metal from the nozzle to provide liquid metal rapidly to areas of the object that require less accuracy (e.g., an inner portion of the object). Accordingly, switching between pneumatically actuated ejection and electrically actuated ejection can facilitate accurate and rapid production of parts through additive manufacturing.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Jonah Samuel Myerberg, Toshana Krishna Natchurivalapil Rappai James, Emanuel Michael Sachs, Paul A. Hoisington, Kevin Michael Li, Richard Remo Fontana
  • Publication number: 20170252821
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. The magnetohydrodynamic force can be pulsed to eject droplets of the liquid metal to provide control over accuracy of the object being fabricated. The pulsations can be applied in fluid chambers having high resonance frequencies such that droplet ejection can be effectively controlled over a wide range of frequencies, including high frequencies suitable for liquid metal ejection at rates suitable for commercially viable three-dimensional fabrication.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Emanuel Michael Sachs, Mark Gardner Gibson, Paul A. Hoisington, Richard Remo Fontana
  • Publication number: 20170252830
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Electric current delivered to a meniscus of the liquid metal in a quiescent state can be directed to exert a pullback force on the liquid metal. The pullback force can be sufficient to draw the liquid metal, in the quiescent state, in a direction toward the nozzle to reduce the likelihood of unintended wetting of surfaces of the nozzle between uses of the nozzle.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 7, 2017
    Inventors: Emanuel Michael Sachs, Paul A. Hoisington
  • Publication number: 20170252808
    Abstract: Devices, systems, and methods are directed to the pneumatic ejection of liquid metal from a nozzle moving along a controlled three-dimensional pattern to fabricate a three-dimensional object through additive manufacturing. The metal is movable into the nozzle as a valve is actuated to control movement of pressurized gas into the nozzle. Such movement of metal into the valve as pressurized gas is being moved into the nozzle to create an ejection force on liquid metal in the nozzle can reduce or eliminate the need to replenish a supply of the metal in the nozzle and, therefore can facilitate continuous or substantially continuous liquid metal ejection for the fabrication of parts.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Jonah Samuel Myerberg, Toshana Krishna Natchurivalapil Rappai James, Emanuel Michael Sachs, Paul A. Hoisington, Kevin Michael Li