Patents by Inventor Paul A. Morton
Paul A. Morton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12166332Abstract: Waveguide Bragg gratings, optical reflectors and lasers including optical reflectors are disclosed. The optical reflectors include a waveguide, perturbations proximate to the waveguide to create a Bragg grating in the waveguide, and a DC index control structure positioned to vary the DC index along at least a portion of the Bragg grating. In laser embodiments, the waveguide may be coupled to the second end of a semiconductor gain element to form an external cavity having an optical length and a cavity phase. The gain element and optical reflector may be monolithically integrated on a substrate or separate structures.Type: GrantFiled: April 1, 2021Date of Patent: December 10, 2024Assignee: ColdQuanta, Inc.Inventor: Paul A Morton
-
Patent number: 11550173Abstract: There is set forth herein an integrated photonics structure having a waveguide disposed within a dielectric stack of the integrated photonics structure, wherein the integrated photonics structure further includes a field generating electrically conductive structure disposed within the dielectric stack; and a heterogenous structure attached to the integrated photonics structure, the heterogenous structure having field sensitive material that is sensitive to a field generated by the field generating electrically conductive structure.Type: GrantFiled: November 18, 2020Date of Patent: January 10, 2023Assignees: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE, MORTON PHOTONICS INCORPORATIONInventors: Douglas Coolbaugh, Douglas La Tulipe, Paul A. Morton, Nicholas G. Usechak
-
Patent number: 11374654Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: GrantFiled: April 7, 2021Date of Patent: June 28, 2022Assignee: Morton Photonics IncInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20210306075Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: ApplicationFiled: April 7, 2021Publication date: September 30, 2021Inventors: Paul A. MORTON, Jacob KHURGIN
-
Publication number: 20210305781Abstract: Waveguide Bragg gratings, optical reflectors and lasers including optical reflectors are disclosed. The optical reflectors include a waveguide, perturbations proximate to the waveguide to create a Bragg grating in the waveguide, and a DC index control structure positioned to vary the DC index along at least a portion of the Bragg grating. In laser embodiments, the waveguide may be coupled to the second end of a semiconductor gain element to form an external cavity having an optical length and a cavity phase. The gain element and optical reflector may be monolithically integrated on a substrate or separate structures.Type: ApplicationFiled: April 1, 2021Publication date: September 30, 2021Applicant: Morton Hybrid Lasers, LLCInventor: Paul A. Morton
-
Patent number: 11092871Abstract: A novel transmitter is proposed that provides broadband all-optical linearization of a Mach-Zehnder interferometer (MZI) modulator for use in high linearity RF photonic links and optical up-converter and down-converter schemes. It is based on an amplitude modulated (AM) MZI modulator where part of the laser Carrier is passed around the MZI modulator and added back to the AM signal, creating a Controlled Carrier-AM (CC-AM) signal. In this new scheme, a dual output MZI modulator is utilized, and the alternative output (Carrier*) is used together with the Carrier from the laser to create a new signal, LO*, which when coherently combined with the AM signal can reduce or completely cancel its 3rd order intermodulation distortion.Type: GrantFiled: June 29, 2020Date of Patent: August 17, 2021Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 11018770Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: GrantFiled: June 9, 2020Date of Patent: May 25, 2021Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 11005233Abstract: A low noise, single mode laser includes a semiconductor gain element generating light and having a highly reflective first end forming a first end of a laser cavity. The gain element may be monolithically or discretely integrated with, or distinct from, and coupled to a waveguide comprised of a low loss material with a refractive index ānā greater than 3. The waveguide includes a Bragg grating forming the second end of the laser cavity. A cavity phase control section may be provided between the gain element and the Bragg grating. Two photodetector monitors provide a feedback signal for locking the light from the gain element to a specific wavelength on the Bragg grating reflection spectrum by varying at least one of the cavity phase control section and the gain element bias current. The Bragg grating may have a physical length larger than 10 mm and that occupies at least 50% of the optical length of the external cavity.Type: GrantFiled: July 23, 2019Date of Patent: May 11, 2021Assignee: Morton Hybrid Lasers, LLCInventor: Paul A. Morton
-
Publication number: 20210072568Abstract: There is set forth herein an integrated photonics structure having a waveguide disposed within a dielectric stack of the integrated photonics structure, wherein the integrated photonics structure further includes a field generating electrically conductive structure disposed within the dielectric stack; and a heterogenous structure attached to the integrated photonics structure, the heterogenous structure having field sensitive material that is sensitive to a field generated by the field generating electrically conductive structure.Type: ApplicationFiled: November 18, 2020Publication date: March 11, 2021Inventors: Douglas COOLBAUGH, Douglas LA TULIPE, Paul A. MORTON, Nicholas G. USECHAK
-
Publication number: 20210006333Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: ApplicationFiled: June 9, 2020Publication date: January 7, 2021Inventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20200409229Abstract: A novel transmitter is proposed that provides broadband all-optical linearization of a Mach-Zehnder interferometer (MZI) modulator for use in high linearity RF photonic links and optical up-converter and down-converter schemes. It is based on an amplitude modulated (AM) MZI modulator where part of the laser Carrier is passed around the MZI modulator and added back to the AM signal, creating a Controlled Carrier-AM (CC-AM) signal. In this new scheme, a dual output MZI modulator is utilized, and the alternative output (Carrier*) is used together with the Carrier from the laser to create a new signal, LO*, which when coherently combined with the AM signal can reduce or completely cancel its 3rd order intermodulation distortion.Type: ApplicationFiled: June 29, 2020Publication date: December 31, 2020Inventors: Paul A. MORTON, Jacob KHURGIN
-
Patent number: 10877300Abstract: There is set forth herein an integrated photonics structure having a waveguide disposed within a dielectric stack of the integrated photonics structure, wherein the integrated photonics structure further includes a field generating electrically conductive structure disposed within the dielectric stack; and a heterogenous structure attached to the integrated photonics structure, the heterogenous structure having field sensitive material that is sensitive to a field generated by the field generating electrically conductive structure.Type: GrantFiled: April 3, 2019Date of Patent: December 29, 2020Assignees: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE, MORTON PHOTONICS INCORPORATEDInventors: Douglas Coolbaugh, Douglas La Tulipe, Paul A. Morton, Nicholas G. Usechak
-
Patent number: 10855376Abstract: The present invention reduces the level of optical reflections created in a photonic integrated circuit (PIC) going back into an integrated laser through Reflection Engineering; optimizing the phase/timing and position of optical reflections inherent to a PIC design while adding engineered reflections to the PIC to allow inherent reflections to be reduced or eliminated. The Wavelength Division Multiplexed (WDM) geometric optical isolator of the present invention combines an array of closely spaced WDM lasers with an array of modulators in a novel geometry in order to provide effective optical isolation of the lasers.Type: GrantFiled: January 30, 2020Date of Patent: December 1, 2020Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10727947Abstract: The present invention reduces the level of optical reflections created in a photonic integrated circuit (PIC) going back into an integrated laser through Reflection Engineering; optimizing the phase/timing and position of optical reflections inherent to a PIC design while adding engineered reflections to the PIC to allow inherent reflections to be reduced or eliminated. The Wavelength Division Multiplexed (WDM) geometric optical isolator of the present invention combines an array of closely spaced WDM lasers with an array of modulators in a novel geometry in order to provide effective optical isolation of the lasers.Type: GrantFiled: April 24, 2019Date of Patent: July 28, 2020Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10715254Abstract: High-performance ultra-wideband Phased Array Sensors (PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Receive PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides, combining key component technologies into complex PIC devices. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture also includes optical down-conversion, as well as digital signal processing to improve the linearity of the system. Simultaneous multi-channel beamforming is achieved through optical power splitting of optical signals to create multiple exact replicas of the signals that are then processed independently.Type: GrantFiled: March 18, 2019Date of Patent: July 14, 2020Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20190372307Abstract: A low noise, single mode laser includes a semiconductor gain element generating light and having a highly reflective first end forming a first end of a laser cavity. The gain element may be monolithically or discretely integrated with, or distinct from, and coupled to a waveguide comprised of a low loss material with a refractive index ānā greater than 3. The waveguide includes a Bragg grating forming the second end of the laser cavity. A cavity phase control section may be provided between the gain element and the Bragg grating. Two photodetector monitors provide a feedback signal for locking the light from the gain element to a specific wavelength on the Bragg grating reflection spectrum by varying at least one of the cavity phase control section and the gain element bias current. The Bragg grating may have a physical length larger than 10 mm and that occupies at least 50% of the optical length of the external cavity.Type: ApplicationFiled: July 23, 2019Publication date: December 5, 2019Applicant: Morton Photonics, Inc.Inventor: Paul A. Morton
-
Publication number: 20190331941Abstract: There is set forth herein an integrated photonics structure having a waveguide disposed within a dielectric stack of the integrated photonics structure, wherein the integrated photonics structure further includes a field generating electrically conductive structure disposed within the dielectric stack; and a heterogenous structure attached to the integrated photonics structure, the heterogenous structure having field sensitive material that is sensitive to a field generated by the field generating electrically conductive structure.Type: ApplicationFiled: April 3, 2019Publication date: October 31, 2019Inventors: Douglas COOLBAUGH, Douglas LA TUPLIPE, JR., Paul A. MORTON, Nicholas G. USECHAK
-
Patent number: 10454248Abstract: A laser including: a gain chip; an external cavity incorporating a Bragg grating; and a baseplate; wherein a first end of the gain chip has a high reflectivity facet forming a first end of the laser cavity; a second end of the gain chip has a low reflectivity facet; and a second part of the external cavity comprises a Bragg grating, supported by the baseplate, the temperature of the baseplate being maintained through a feedback loop; wherein the optical length of the external cavity is at least an order of magnitude greater than the optical length of the gain chip; wherein the Bragg grating is physically long and occupies a majority of the length of the external cavity and is apodized to control the sidemodes of the grating reflection.Type: GrantFiled: January 14, 2019Date of Patent: October 22, 2019Assignee: Morton Photonics IncorporatedInventor: Paul A. Morton
-
Publication number: 20190253146Abstract: The present invention reduces the level of optical reflections created in a photonic integrated circuit (PIC) going back into an integrated laser through Reflection Engineering; optimizing the phase/timing and position of optical reflections inherent to a PIC design while adding engineered reflections to the PIC to allow inherent reflections to be reduced or eliminated. The Wavelength Division Multiplexed (WDM) geometric optical isolator of the present invention combines an array of closely spaced WDM lasers with an array of modulators in a novel geometry in order to provide effective optical isolation of the lasers.Type: ApplicationFiled: April 24, 2019Publication date: August 15, 2019Applicant: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20190215070Abstract: High-performance ultra-wideband Phased Array Sensors (PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Receive PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides, combining key component technologies into complex PIC devices. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture also includes optical down-conversion, as well as digital signal processing to improve the linearity of the system. Simultaneous multi-channel beamforming is achieved through optical power splitting of optical signals to create multiple exact replicas of the signals that are then processed independently.Type: ApplicationFiled: March 18, 2019Publication date: July 11, 2019Inventors: Paul A. Morton, Jacob Khurgin