Patents by Inventor Paul A. Remillard

Paul A. Remillard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240393140
    Abstract: A Halbach-based magnetic position sensor includes a Halbach magnetic element having a spatially rotating magnetization pattern along an extent, producing a focused and augmented magnetic field on a working side relative to a magnetic field on a non-working side. A sensing element on the working side is co-configured with the Halbach magnetic element for relative motion therebetween. The sensing element includes encoder circuitry and magnetic sensors that sense the working-side magnetic field and produce corresponding sensor signals. The encoder circuitry translates the sensor signals into position signals indicating relative position between the sensing element and the Halbach magnetic element. In one example the Halbach magnetic element has a closed curve (e.g., substantially circular or ring-like) configuration.
    Type: Application
    Filed: August 8, 2024
    Publication date: November 28, 2024
    Inventors: Paul A. Remillard, Deepak Surendran
  • Patent number: 12146773
    Abstract: An opto-magnetic rotary position encoder includes a polarization optical encoder and a magnetic encoder, both configured for on-axis placement and operation with respect to a rotational axis of a rotating component. A polarization sensor digital control block and a magnetic sensor digital control block are configured and operative to combine polarizer channel position data and magnetic channel position data in a manner providing for one or more of (1) redundancy, (2) calibration, (3) monitoring performance of one channel in relation to the other channel, or (4) compensation or correction of one channel based on the other channel.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: November 19, 2024
    Assignee: Novanta Corporation
    Inventors: Daniel J. Holmes, Paul A. Remillard, Deepak Surendran
  • Patent number: 12123751
    Abstract: A Halbach-based magnetic position sensor includes a Halbach magnetic element having a spatially rotating magnetization pattern along an extent, producing a focused and augmented magnetic field on a working side relative to a magnetic field on a non-working side. A sensing element on the working side is co-configured with the Halbach magnetic element for relative motion therebetween. The sensing element includes encoder circuitry and magnetic sensors that sense the working-side magnetic field and produce corresponding sensor signals. The encoder circuitry translates the sensor signals into position signals indicating relative position between the sensing element and the Halbach magnetic element. In one example the Halbach magnetic element has a closed curve (e.g., substantially circular or ring-like) configuration.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: October 22, 2024
    Assignee: Novanta Corporation
    Inventors: Paul A. Remillard, Deepak Surendran
  • Publication number: 20230082380
    Abstract: A Halbach-based magnetic position sensor includes a Halbach magnetic element having a spatially rotating magnetization pattern along an extent, producing a focused and augmented magnetic field on a working side relative to a magnetic field on a non-working side. A sensing element on the working side is co-configured with the Halbach magnetic element for relative motion therebetween. The sensing element includes encoder circuitry and magnetic sensors that sense the working-side magnetic field and produce corresponding sensor signals. The encoder circuitry translates the sensor signals into position signals indicating relative position between the sensing element and the Halbach magnetic element. In one example the Halbach magnetic element has a closed curve (e.g., substantially circular or ring-like) configuration.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 16, 2023
    Inventors: Paul A. Remillard, Deepak Surendran
  • Publication number: 20220373360
    Abstract: An opto-magnetic rotary position encoder includes a polarization optical encoder and a magnetic encoder, both configured for on-axis placement and operation with respect to a rotational axis of a rotating component. A polarization sensor digital control block and a magnetic sensor digital control block are configured and operative to combine polarizer channel position data and magnetic channel position data in a manner providing for one or more of (1) redundancy, (2) calibration, (3) monitoring performance of one channel in relation to the other channel, or (4) compensation or correction of one channel based on the other channel.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 24, 2022
    Inventors: Daniel J. Holmes, Paul A. Remillard, Deepak Surendran
  • Patent number: 10536033
    Abstract: A communication system that involves superimposing data over DC power. The data takes the form of high bitrate digital signals, where the bitrate is much higher than 0 Hz (DC); this separation allows the AC signal to be easily separated from the DC power. The physical system consists of a two conductor cable, and integration is modular, in that multiple slaves can be connected and disconnected to a master through a routing bus also comprising two conductors. The master can communicate bi-directionally with the slave(s), and the data is encoded using DC-balanced encoding in an FPGA. The data is sent to and from a differential signaling transmitter/receiver pairs at each end of the cable. The system is may be used with position sensors, and provides the benefit of reducing cable costs and sensor size due to the decrease in number of conductors and elimination of power components in the sensor.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: January 14, 2020
    Assignee: Novanta Corporation
    Inventors: Paul A. Remillard, Andrew M. Goldman, Mark Lang
  • Publication number: 20170294805
    Abstract: A communication system that involves superimposing data over DC power. The data takes the form of high bitrate digital signals, where the bitrate is much higher than 0 Hz (DC); this separation allows the AC signal to be easily separated from the DC power. The physical system consists of a two conductor cable, and integration is modular, in that multiple slaves can be connected and disconnected to a master through a routing bus also comprising two conductors. The master can communicate bi-directionally with the slave(s), and the data is encoded using DC-balanced encoding in an FPGA. The data is sent to and from a differential signaling transmitter/receiver pairs at each end of the cable. The system is may be used with position sensors, and provides the benefit of reducing cable costs and sensor size due to the decrease in number of conductors and elimination of power components in the sensor.
    Type: Application
    Filed: March 23, 2017
    Publication date: October 12, 2017
    Applicant: Novanta Corporation
    Inventors: Paul A. Remillard, Andrew M. Goldman, Mark Lang
  • Patent number: 9689717
    Abstract: Phase estimation apparatus processes sensor signals from sensors to estimate a phase of a periodically varying state of an object, such as position of a moving object. A phase estimation processor applies a first correlation calculation to simultaneously collected samples of the sensor signals to generate first quadrature values, where the first correlation calculation employs variable calculation values, and applies a phase calculation to the first quadrature values to generate the phase estimation. A pre-quadrature calibration circuit applies respective second correlation calculations to respective sequences of samples of the sensor signals individually to generate second quadrature values for each of the sensor signals, and applies phase and/or magnitude calculations to the sets of second quadrature values to generate the variable calculation values for the first correlation calculation, thereby compensate for the error component and improve accuracy of the estimated phase.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: June 27, 2017
    Assignee: Novanta Corporation
    Inventors: Paul A. Remillard, Bruce A. Horwitz
  • Publication number: 20150048242
    Abstract: Phase estimation apparatus processes sensor signals from sensors to estimate a phase of a periodically varying state of an object, such as position of a moving object. A phase estimation processor applies a first correlation calculation to simultaneously collected samples of the sensor signals to generate first quadrature values, where the first correlation calculation employs variable calculation values, and applies a phase calculation to the first quadrature values to generate the phase estimation. A pre-quadrature calibration circuit applies respective second correlation calculations to respective sequences of samples of the sensor signals individually to generate second quadrature values for each of the sensor signals, and applies phase and/or magnitude calculations to the sets of second quadrature values to generate the variable calculation values for the first correlation calculation, thereby compensate for the error component and improve accuracy of the estimated phase.
    Type: Application
    Filed: August 27, 2014
    Publication date: February 19, 2015
    Inventors: Paul A. Remillard, Bruce A. Horwitz
  • Patent number: 8612065
    Abstract: A position encoder provides one or more trigger outputs based on position signals developed within the encoder, in addition to traditional position output signals used by other system components such as a motion controller. The trigger outputs may be used directly by a triggered device, bypassing the motion controller and obviating any separate trigger generation electronics. The trigger output(s) can be fully synchronous with the encoder's position output signal(s) with essentially no latency or jitter, increasing accuracy and providing improved system performance. The trigger functionality can be incorporated in a variety of encoder types (e.g., absolute and incremental) and technologies (optical, magnetic, inductive etc.), and used in conjunction with different position output signal formats (e.g., quadrature, serial).
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: December 17, 2013
    Assignee: GSI Group Corporation
    Inventors: Andrew M. Goldman, Paul A. Remillard
  • Publication number: 20110218695
    Abstract: A position encoder provides one or more trigger outputs based on position signals developed within the encoder, in addition to traditional position output signals used by other system components such as a motion controller. The trigger outputs may be used directly by a triggered device, bypassing the motion controller and obviating any separate trigger generation electronics. The trigger output(s) can be fully synchronous with the encoder's position output signal(s) with essentially no latency or jitter, increasing accuracy and providing improved system performance. The trigger functionality can be incorporated in a variety of encoder types (e.g., absolute and incremental) and technologies (optical, magnetic, inductive etc.), and used in conjunction with different position output signal formats (e.g., quadrature, serial).
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Andrew M. Goldman, Paul A. Remillard
  • Patent number: 5210484
    Abstract: A heterodyning lock-in amplifier in which the reference signal is shifted up in frequency (as in prior art designs), but then shifted back down in frequency prior to mixing with the input signal.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: May 11, 1993
    Assignees: Louis R. Fantozzi, Lawrence Kessler
    Inventors: Paul A. Remillard, Michael C. Amorelli