Patents by Inventor Paul A. Sechrist

Paul A. Sechrist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060108274
    Abstract: Disclosed is a mixer-distributor-collector apparatus for use between beds of solid particles in a fluid-solid contacting vessel. The apparatus includes a solids retaining screen, fluid deflector, passageway, fluid distributor, and flow manipulator. The flow manipulator is a device such as a honeycomb, porous solid, perforated plate, screen, or grid having an open area greater than the open area of the fluid distributor and is located below and spaced apart from the fluid distributor. The apparatus improves the fluid flow characteristics by minimizing or eliminating fluid velocity jets and/or other turbulence which can disturb the downstream particle bed. In an exemplary application, the invention finds use in simulated moving bed (SMB) adsorptive separation processes.
    Type: Application
    Filed: November 19, 2004
    Publication date: May 25, 2006
    Inventors: Stanley Frey, Paul Sechrist, Daniel Kauff
  • Publication number: 20050139515
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Application
    Filed: November 8, 2004
    Publication date: June 30, 2005
    Inventors: Weikai Gu, Paul Sechrist
  • Patent number: 6881391
    Abstract: A method for decreasing the environmental release of a halogen from a process for regenerating catalyst particles in a catalyst bed of a regeneration zone is disclosed.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: April 19, 2005
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Patent number: 6814857
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: November 9, 2004
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Patent number: 6814943
    Abstract: A method and apparatus for alkylating an alkylation substrate with an alkylating agent in the presence of solid catalyst particles in a transport reactor is disclosed. Solid catalyst particles in the transport reactor effluent recirculate to the inlet of the transport reactor through one or more conduits. The rate through each conduit is regulated by fluid-controlled valves that use the alkylation substrate as the regulating fluid. This method and apparatus help ensure uniform or symmetric flow of catalyst from the effluent of the transport reactor to the bottom of the transport reactor. This method and apparatus also help ensure uniform or symmetric flow of alkylation substrate to the bottom of the transport reactor with minimal bypassing by the alkylating agent around of the transport reactor. This invention finds use in the production of motor fuels by the alkylation of liquid hydrocarbons in the presence of solid catalyst particles.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: November 9, 2004
    Assignee: UOP LLC
    Inventors: William H. Radcliffe, Wesley L. Kiel, Christopher D. Gosling, Paul A. Sechrist, Paul Anderson
  • Patent number: 6797026
    Abstract: A novel cyclone is disclosed that is effective for separating, from a contaminated gas stream, solid particulates having diameters as low as 4 to 5 microns. When multiple cyclones of the present invention are affixed between upper and lower tube sheets in a separator device, fine particle removal is possible to the extent required 1) by stringent regulations governing particulate emissions into the atmosphere, or 2) to prevent damage to turbine blades in downstream power recovery equipment. The cyclones are especially relevant to the problem of removing catalyst fines from refinery effluents, most notably fluid catalytic cracking (FCC) regenerator flue gas. The cyclone separation efficiency is enhanced through the use of 1) a uni-directional flow of gas from the contaminated gas inlet to the clean gas outlet and 2) discharge openings on the surface of the cyclone body that allow ejection of solid particulates.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: September 28, 2004
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Brian W. Hedrick
  • Patent number: 6790802
    Abstract: A method of recovering halogen-containing materials from the cyclic catalyst regeneration operation of a catalytic hydrocarbon conversion process is disclosed. The method uses an arrangement of beds of adsorbent to return the halogen-containing materials to a circulating regeneration circuit.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: September 14, 2004
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Patent number: 6784132
    Abstract: A method of recovering halogen-containing materials from the cyclic catalyst regeneration operation of a catalytic hydrocarbon conversion process is disclosed. The method uses an arrangement of beds of adsorbent to maintain the halogen-containing materials within a circulating regeneration circuit.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: August 31, 2004
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Publication number: 20040079057
    Abstract: A novel cyclone is disclosed that is effective for separating, from a contaminated gas stream, solid particulates having diameters as low as 4 to 5 microns. When multiple cyclones of the present invention are affixed between upper and lower tube sheets in a separator device, fine particle removal is possible to the extent required 1) by stringent regulations governing particulate emissions into the atmosphere, or 2) to prevent damage to turbine blades in downstream power recovery equipment. The cyclones are especially relevant to the problem of removing catalyst fines from refinery effluents, most notably fluid catalytic cracking (FCC) regenerator flue gas. The cyclone separation efficiency is enhanced through the use of 1) a uni-directional flow of gas from the contaminated gas inlet to the clean gas outlet and 2) discharge openings on the surface of the cyclone body that allow ejection of solid particulates.
    Type: Application
    Filed: October 22, 2003
    Publication date: April 29, 2004
    Inventors: Paul A. Sechrist, Brian W. Hedrick
  • Patent number: 6703479
    Abstract: A process and apparatus is disclosed for heating or cooling polymer solids in a dispensing section of a solid-state polycondensation reactor. Gas is delivered to the dispensing section of the reactor in which it cools polymer solids in the dispensing section by direct heat exchange. Part of the gas is withdrawn at a point proximate to the dispensing section of the reactor and is cooled. The rest of the gas ascends through a reactive section of the reactor and purges polymer solids of impurities. The gas withdrawn from the reactive section of the reactor is oxidized of impurities and dried and then combined with the gas withdrawn proximate to the dispensing section of the reactor. To achieve uniform heating or cooling of the polymer solids in the dispensing section, a preferred ratio of mass flow rate of gas to the mass flow rate of solids is recommended.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: March 9, 2004
    Assignee: UOP LLC
    Inventors: James F. McGehee, Giuseppina R. Boveri, Paul A. Sechrist
  • Patent number: 6673133
    Abstract: A novel cyclone is disclosed that is effective for separating, from a contaminated gas stream, solid particulates having diameters as low as 4-5 microns. When multiple cyclones of the present invention are affixed between upper and lower tube sheets in a separator device, fine particle removal is possible to the extent required 1) by stringent regulations governing particulate emissions into the atmosphere, or 2) to prevent damage to turbine blades in downstream power recovery equipment. The cyclones are especially relevant to the problem of removing catalyst fines from refinery effluents, most notably fluid catalytic cracking (FCC) regenerator flue gas. The cyclone separation efficiency is enhanced through the use of 1) a uni-directional flow of gas from the contaminated gas inlet to the clean gas outlet and 2) discharge openings on the surface of the cyclone body that allow ejection of solid particulates.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: January 6, 2004
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Brian W. Hedrick
  • Publication number: 20030072691
    Abstract: A method and apparatus for alkylating an alkylation substrate with an alkylating agent in the presence of solid catalyst particles in a transport reactor is disclosed. Solid catalyst particles in the transport reactor effluent recirculate to the inlet of the transport reactor through one or more conduits. The rate through each conduit is regulated by fluid-controlled valves that use the alkylation substrate as the regulating fluid. This method and apparatus help ensure uniform or symmetric flow of catalyst from the effluent of the transport reactor to the bottom of the transport reactor. This method and apparatus also help ensure uniform or symmetric flow of alkylation substrate to the bottom of the transport reactor with minimal bypassing by the alkylating agent around of the transport reactor. This invention finds use in the production of motor fuels by the alkylation of liquid hydrocarbons in the presence of solid catalyst particles.
    Type: Application
    Filed: November 19, 2002
    Publication date: April 17, 2003
    Inventors: William H. Radcliffe, Wesley L. Kiel, Christopher D. Gosling, Paul A. Sechrist, Paul Anderson
  • Patent number: 6486374
    Abstract: A method and apparatus for alkylating an alkylation substrate with an alkylating agent in the presence of solid catalyst particles in a transport reactor is disclosed. Solid catalyst particles in the transport reactor effluent recirculate to the inlet of the transport reactor through one or more conduits. The rate through each conduit is regulated by fluid-controlled valves that use the alkylation substrate as the regulating fluid. This method and apparatus help ensure uniform or symmetric flow of catalyst from the effluent of the transport reactor to the bottom of the transport reactor. This method and apparatus also help ensure uniform or symmetric flow of alkylation substrate to the bottom of the transport reactor with minimal bypassing by the alkylating agent around of the transport reactor. This invention finds use in the production of motor fuels by the alkylation of liquid hydrocarbons in the presence of solid catalyst particles.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: November 26, 2002
    Assignee: UOP LLC
    Inventors: William H. Radcliffe, Wesley L. Kiel, Christopher D. Gosling, Paul A. Sechrist, Paul Anderson
  • Publication number: 20020144931
    Abstract: A novel cyclone is disclosed that is effective for separating, from a contaminated gas stream, solid particulates having diameters as low as 4-5 microns. When multiple cyclones of the present invention are affixed between upper and lower tube sheets in a separator device, fine particle removal is possible to the extent required 1) by stringent regulations governing particulate emissions into the atmosphere, or 2) to prevent damage to turbine blades in downstream power recovery equipment. The cyclones are especially relevant to the problem of removing catalyst fines from refinery effluents, most notably fluid catalytic cracking (FCC) regenerator flue gas. The cyclone separation efficiency is enhanced through the use of 1) a uni-directional flow of gas from the contaminated gas inlet to the clean gas outlet and 2) discharge openings on the surface of the cyclone body that allow ejection of solid particulates.
    Type: Application
    Filed: April 27, 2001
    Publication date: October 10, 2002
    Inventors: Paul A. Sechrist, Brian W. Hedrick
  • Patent number: 6461992
    Abstract: A method is disclosed for decreasing the emissions of chlorine-containing species from a moving bed process for regenerating spent catalyst particles with a recycle gas stream. A recycle gas stream contacts spent catalyst particles at regeneration conditions, thereby producing a flue gas stream. The flue gas stream which contains chlorine-containing species contacts spent catalyst particles at sorption conditions. The sorption conditions are characterized by the substantial absence of carbon combustion. The spent catalyst particles sorb the chlorine-containing species from the flue gas stream, thereby producing the recycle gas stream. A portion of the recycle gas stream is vented from the process. This method captures and returns to the process the chlorine-containing species that would be lost from the process and that would need to be replaced by the injection of make-up chlorine-containing species. This method results in a significant savings in capital and operating costs of the process.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: October 8, 2002
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Delmar W. Robinson
  • Patent number: 6392114
    Abstract: An alkylating agent alkylates an alkylation substrate in a solid catalyst alkylation process in which an alkylation reactor produces a reaction effluent and a catalyst regeneration zone produces a hydrogen-containing regeneration effluent. The alkylation effluent passes to an alkylate fractionation zone, while the regeneration effluent passes to a hydrogen fractionation zone to remove hydrogen and produce a hydrogen-depleted stream that passes to the alkylate fractionation zone. The process recycles hydrogen, and can recycle halogen-containing species as well, within the process while preventing admixture of hydrogen with the alkylating agent. This invention is particularly applicable to alkylation processes that use an olefinic alkylating agent.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: May 21, 2002
    Assignee: UOP LLC
    Inventors: Dale J. Shields, Paul A. Sechrist
  • Patent number: 6290916
    Abstract: A method and apparatus are disclosed for removing water from a recycle gas stream in a catalyst regeneration process. A recycle gas stream contacts catalyst and the catalyst sorbs water from the recycle gas. Some of the now-dried recycle gas recirculates to the regeneration process, thereby decreasing the water content in the regeneration process. The catalyst containing sorbed water passes to a desorption zone, where water is desorbed from the catalyst and the desorbed water is rejected from the process. This method and apparatus are useful for extending the life of catalyst in catalytic hydrocarbon processes that employ continuous or semi-continuos catalyst regeneration zones.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: September 18, 2001
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Delmar W. Robinson, William D. Schlueter
  • Patent number: 6274101
    Abstract: A process and apparatus for indirectly heating reactants in a reaction zone controls the combustion of fuel through the metering of combustion gas from a central channel across perforated plates into outer combustion channels. Controlling the combustion of fuel in channels that supplies heat indirectly to a reaction zone simplifies the operation of the reaction zone and improves reaction zone conversion and/or selectivity. Simplified operation results from the elimination of equipment for the heating of the heat exchange fluid by the controlled combustion of fuel in situ in the reaction zone. Improved conversion and/or selectivity proceeds from reduction in temperature differences between the heating medium and the reactants. Catalyst promotion of fuel combustion may also be varied through other available mechanisms such as variations in residence time, catalyst composition, flow area, and component concentration. Particularly suitable catalysts comprise oxidation promoting catalysts.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: August 14, 2001
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Patent number: 6153091
    Abstract: A method is disclosed for decreasing the emissions of chlorine-containing species from a moving bed process for regenerating spent catalyst particles with a recycle gas stream. A recycle gas stream contacts spent catalyst particles at regeneration conditions, thereby producing a flue gas stream. The flue gas stream which contains chlorine-containing species contacts spent catalyst particles at sorption conditions. The spent catalyst particles sorb the chlorine-containing species from the flue gas stream, thereby producing the recycle gas stream. A portion of the recycle gas stream is vented from the process. This method captures and returns to the process the chlorine-containing species that would be lost from the process and that would need to be replaced by the injection of make-up chlorine-containing species. This method results in a significant savings in capital and operating costs of the process.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: November 28, 2000
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Delmar W. Robinson
  • Patent number: 6123833
    Abstract: A method and apparatus are disclosed for removing water from a recycle gas stream in a catalyst regeneration process. A recycle gas stream contacts catalyst and the catalyst sorbs water from the recycle gas. Some of the now-dried recycle gas recirculates to the regeneration process, thereby decreasing the water content in the regeneration process. The catalyst containing sorbed water passes to a desorption zone, where water is desorbed from the catalyst and the desorbed water is rejected from the process. This method and apparatus are useful for extending the life of catalyst in catalytic hydrocarbon processes that employ continuous or semi-continuos catalyst regeneration zones.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: September 26, 2000
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Delmar W. Robinson, William D. Schlueter