Patents by Inventor Paul A. Stone

Paul A. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939877
    Abstract: An integrally bladed rotor (IBR) for a gas turbine engine and method is provided. The IBR is configured for use in blade off testing and includes a hub, a plurality of rotor blades, a central passage, and first and second lateral cavities. The hub has forward and aft ends and a circumferentially extending exterior surface. The central passage is disposed in the hub radially below a test rotor blade, extending along a path between an inlet at or forward of the test blade leading edge and an outlet at or aft of the test blade trailing edge. The first and second lateral cavities are disposed in the hub, extending generally parallel to the central passage path, on opposite circumferential sides. The first lateral cavity is disposed a distance (MSD1) from the central passage and the second lateral cavity is disposed a distance (MSD2) from the central passage.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: March 26, 2024
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Paul Stone, Dikran Mangardich
  • Patent number: 11927108
    Abstract: An integrated bladed rotor of a gas turbine engine is provided. The integrated bladed rotor includes a hub having a rotation axis and a radially outer platform relative to the rotation axis, and a plurality of blades extending radially outwardly from the outer platform of the hub. The blades are integrally formed with the hub to define a monolithic component with the hub. Two or more of the blades each include: an airfoil including a groove formed in an outer surface of the airfoil to mitigate crack propagation, and a root fillet providing a transition between the outer platform of the hub and the airfoil.
    Type: Grant
    Filed: August 7, 2021
    Date of Patent: March 12, 2024
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Paul Stone, Dikran Mangardich
  • Publication number: 20230392503
    Abstract: A rotor of an aircraft engine has a plurality of blades extending radially from a disc. At least one of the blades has an airfoil, a root and a tip. The airfoil has a crack-mitigating rib extending chordwise along the airfoil. The crack-mitigating rib is disposed radially closer to the root than to the tip.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 7, 2023
    Inventors: Paul Aitchison, Paul Stone, Dikran Mangardich
  • Publication number: 20230349297
    Abstract: A method includes: obtaining a rotor having a hub and a plurality of blades protruding from the hub, the plurality of blades including first blades and second blades disposed in alternation around a central axis of the rotor, natural vibration frequencies of the first blades different from natural vibration frequencies of the second blades; determining that a difference between a first natural vibration frequency of a first blade of the first blades and a second natural vibration frequency of a second blade of the second blades is below a threshold; and modifying a shape of the first blade until the difference between the first natural vibration frequency and the second natural vibration frequency is at or above the threshold.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Krishna Prasad BALIKE, Edwin WONG, Daniel FUDGE, Ignatius THERATIL, Paul STONE, Charles MASON, Karan ANAND, Pascal DORAN
  • Publication number: 20230043965
    Abstract: An integrated bladed rotor of a gas turbine engine is provided. The integrated bladed rotor includes a hub having a rotation axis and a radially outer platform relative to the rotation axis, and a plurality of blades extending radially outwardly from the outer platform of the hub. The blades are integrally formed with the hub to define a monolithic component with the hub. Two or more of the blades each include: an airfoil including a groove formed in an outer surface of the airfoil to mitigate crack propagation, and a root fillet providing a transition between the outer platform of the hub and the airfoil.
    Type: Application
    Filed: August 7, 2021
    Publication date: February 9, 2023
    Inventors: Paul STONE, Dikran MANGARDICH
  • Patent number: 11391208
    Abstract: A fan blade anti-icing system comprises a fan hub and a fan blade extending radially outwardly from the fan hub. The fan blade has a base and an airfoil extending radially outwardly from the fan base. The airfoil having a leading edge, a trailing edge, a convex side surface between the leading and trailing edge and a concave side surface between the leading and trailing edge. The fan blade further has a radial passage extending from a blade air inlet in the blade base in communication with a source of heated air, and a rearwardly directed passage in communication with the radial passage and having a blade air outlet forward of the trailing edge and oriented tangentially to the convex side surface or concave side surface of the airfoil.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: July 19, 2022
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Richard Ivakitch, David Menheere, Paul Stone
  • Patent number: 11353038
    Abstract: The gas turbine compressor for an aircraft gas turbine engine includes a compressor rotor having a plurality of compressor blades circumferentially distributed around a hub. Each of the compressor blades has an airfoil extending radially outward from the hub to a blade tip. A circumferential row of the compressor blades includes two or more different blade types, at least one modified blade of the two or more different blade types having means for generating different shock patterns between adjacent ones of the two or more different blade types when the gas turbine compressor operates in supersonic flow regimes. The means for generating different shock patterns on the modified blade aerodynamically mistune the two or more different blade types.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 7, 2022
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Ignatius Theratil, Krishna Prasad Balike, Aldo Abate, Sean Kelly, Peter Townsend, Ronald Dutton, Anthony Brown, Paul Stone, Myron Klein, Milica Kojovic, Robert Venditti
  • Patent number: 11215055
    Abstract: A method of balancing a gas turbine engine rotor comprises the step of obtaining a rotor disc with a circumferential array of balance tabs projecting from a peripheral rim of the disc. Stress shielding scallops are defined in the rotor disc between the tabs. The balancing is achieved by removing material from at least one of the tabs.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 4, 2022
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventor: Paul Stone
  • Patent number: 11118457
    Abstract: A method of heating a fan blade of a gas turbine engine for anti-icing includes emitting jets of heated air from a radial fin disposed upstream from a radially inward portion of a fan blade airfoil, the jets of heated air being directed by outlet orifices in a downstream direction substantially parallel to a flow of incoming air over the fan blade airfoil.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: September 14, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Richard Ivakitch, David Menheere, Paul Stone
  • Publication number: 20210277826
    Abstract: A fan blade anti-icing system comprises a fan hub and a fan blade extending radially outwardly from the fan hub. The fan blade has a base and an airfoil extending radially outwardly from the fan base. The airfoil having a leading edge, a trailing edge, a convex side surface between the leading and trailing edge and a concave side surface between the leading and trailing edge. The fan blade further has a radial passage extending from a blade air inlet in the blade base in communication with a source of heated air, and a rearwardly directed passage in communication with the radial passage and having a blade air outlet forward of the trailing edge and oriented tangentially to the convex side surface or concave side surface of the airfoil.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 9, 2021
    Inventors: Richard IVAKITCH, David MENHEERE, Paul STONE
  • Patent number: 11073082
    Abstract: A fan blade anti-icing system comprises a fan hub and a fan blade extending radially outwardly from the fan hub. The fan blade has a base and an airfoil extending radially outwardly from the fan base. The airfoil having a leading edge, a trailing edge, a convex side surface between the leading and trailing edge and a concave side surface between the leading and trailing edge. The fan blade further has a radial passage extending from a blade air inlet in the blade base in communication with a source of heated air, and a rearwardly directed passage in communication with the radial passage and having a blade air outlet forward of the trailing edge and oriented tangentially to the convex side surface or concave side surface of the airfoil.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: July 27, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Richard Ivakitch, David Menheere, Paul Stone
  • Patent number: 11002293
    Abstract: A compressor rotor for a gas turbine engine includes a hub disposed about an axis of rotation and an outer surface forming a radially inner gaspath boundary, the outer surface defining a nominal hub diameter. A circumferential array of blades extends radially outwardly from the hub. A first inter-blade passage is defined between a first set of adjacent blades and has a first throat area. A second inter-blade passage is defined between a second set of adjacent blades and has a second throat area that is smaller than the first throat area. At least one scoop is disposed in the second inter-blade passage, the scoop defining a cavity extending radially into the outer surface of the hub relative to the nominal hub diameter.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: May 11, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Karan Anand, Farid Abrari, Ernest Adique, Paul Aitchison, Daniel Fudge, Kari Heikurinen, Paul Stone, Tibor Urac, Thomas Veitch
  • Publication number: 20210123383
    Abstract: A fan blade anti-icing system comprises a fan hub and a fan blade extending radially outwardly from the fan hub. The fan blade has a base and an airfoil extending radially outwardly from the fan base. The airfoil having a leading edge, a trailing edge, a convex side surface between the leading and trailing edge and a concave side surface between the leading and trailing edge. The fan blade further has a radial passage extending from a blade air inlet in the blade base in communication with a source of heated air, and a rearwardly directed passage in communication with the radial passage and having a blade air outlet forward of the trailing edge and oriented tangentially to the convex side surface or concave side surface of the airfoil.
    Type: Application
    Filed: November 14, 2019
    Publication date: April 29, 2021
    Inventors: Richard Ivakitch, David Menheere, Paul Stone
  • Publication number: 20210115795
    Abstract: A method of heating a fan blade of a gas turbine engine for anti-icing includes emitting jets of heated air from a radial fin disposed upstream from a radially inward portion of a fan blade airfoil, the jets of heated air being directed by outlet orifices in a downstream direction substantially parallel to a flow of incoming air over the fan blade airfoil.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 22, 2021
    Inventors: Richard IVAKITCH, David MENHEERE, Paul STONE
  • Patent number: 10906472
    Abstract: A multi-hitch receiver assembly adapted for use on a trailer comprising a main frame that is adapted to be secured to the trailer, a means for securing the main frame to the trailer, and at least one receiver box assembly. The at least one receiver box assembly comprises a first member that is adapted to be secured to the main frame, a second member that is adapted to removably secure a first cargo carrier and is secured to the first member, and a third member that is adapted to removably secure a second cargo carrier and is secured to the second member. The at least one receiver box assembly is adapted to be secured to the main frame at more than one location on the main frame. A method comprising securing the main frame to the trailer.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: February 2, 2021
    Inventor: Sherman Paul Stone
  • Publication number: 20200392968
    Abstract: The gas turbine compressor for an aircraft gas turbine engine includes a compressor rotor having a plurality of compressor blades circumferentially distributed around a hub. Each of the compressor blades has an airfoil extending radially outward from the hub to a blade tip. A circumferential row of the compressor blades includes two or more different blade types, at least one modified blade of the two or more different blade types having means for generating different shock patterns between adjacent ones of the two or more different blade types when the gas turbine compressor operates in supersonic flow regimes. The means for generating different shock patterns on the modified blade aerodynamically mistune the two or more different blade types.
    Type: Application
    Filed: April 29, 2020
    Publication date: December 17, 2020
    Inventors: Ignatius THERATIL, Krishna Prasad BALIKE, Aldo ABATE, Sean KELLY, Peter TOWNSEND, Ronald DUTTON, Anthony BROWN, Paul STONE, Myron KLEIN, Milica KOJOVIC, Robert VENDITTI
  • Patent number: 10865807
    Abstract: A compressor rotor for a gas turbine engine is described which includes sets of blades having different airfoil thickness distributions, each including a frequency modifier forming a thickness differential relative to a baseline blade thickness. The frequency modifiers provide different natural vibration frequencies for each of the blades, and facilitate modifying natural vibration frequency separation between adjacent blades of the compressor rotor.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: December 15, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Ignatius Theratil, Krishna Prasad Balike, Sean Michael Kelly, Richard Ivakitch, Peter Townsend, Ronald Dutton, Paul Stone, Robert Venditti, Daniel Fudge, Milica Kojovic, Aldo Abate
  • Patent number: 10865806
    Abstract: A rotor for a gas turbine engine. The rotor includes blades circumferentially distributed around a hub. The blades have airfoils with a span defined between a root and tip, a chord defined between a leading edge and a trailing edge, and a thickness defined between a pressure side surface and suction side surface. The blades include first blades and second blades. The airfoil of the first blades has a first thickness distribution defining a first natural vibration frequency of the airfoils of the first blades. The airfoil of the second blades has a second thickness distribution defining a second natural vibration frequency different than the first natural vibration frequency. The first thickness distribution is different than the second thickness distribution along a radially-inner half of the span, and the first thickness distribution matches the second thickness distribution along a radially-outer half of the span.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: December 15, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Veitch, Farid Abrari, Ernest Adique, Daniel Fudge, Kari Heikurinen, Paul Stone, Ignatius Theratil, Peter Townsend, Tibor Urac
  • Patent number: 10837459
    Abstract: A fan for a gas turbine engine comprises blades distributed around a hub. The blades include first and second blades, having geometric parameters and/or material properties that differ from each other to frequency mistune the fan. The blades are distributed about the hub with at least one second blade between adjacent first blades. The leading edge of the airfoil of the second blades is disposed axially aft of the corresponding leading edge of the first blades in at least a portion of the blade span.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: November 17, 2020
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Thomas Veitch, Farid Abrari, Ernest Adique, Daniel Fudge, Kari Heikurinen, Paul Stone, Ignatius Theratil, Peter Townsend, Tibor Urac
  • Publication number: 20200200013
    Abstract: A method of balancing a gas turbine engine rotor comprises the step of obtaining a rotor disc with a circumferential array of balance tabs projecting from a peripheral rim of the disc. Stress shielding scallops are defined in the rotor disc between the tabs. The balancing is achieved by removing material from at least one of the tabs.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 25, 2020
    Inventor: Paul STONE