Patents by Inventor Paul Andrew Edwards
Paul Andrew Edwards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230364932Abstract: A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. A computer system receives information defining a relief pattern for forming the 3D relief using a digital inkjet printer. From the information, a feature vector is extracted comprising one or more features describing the 3D relief. A machine learning model is used to generate control commands based on the feature vector. The machine learning model is trained to generate the control commands to configure the digital inkjet printer to apply binder ink to a first region of a surface of the substrate. The applied binder ink is configured to form a protective layer over the first region of the surface of the substrate. The digital inkjet printer is configured to apply solvent ink to the surface of the substrate.Type: ApplicationFiled: July 27, 2023Publication date: November 16, 2023Inventors: Mark ZAVADA, Matthew TENNIS, David WEBER, Alexander MERANTO, Carlos CARRATALÁ, Fernando Tomás BADENES, Louis Justus FAGE, Ursula GOOD, Paul Andrew EDWARDS, Robert ROGGERS, John HANSEN
-
Patent number: 11633972Abstract: A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. In an example embodiment, the introduced technique includes application of binder ink to a portion of the surface of a substrate using a digital inkjet process. This binder ink forms a barrier layer which protects the portion of the surface of the substrate. Next, a brushing process is applied to remove unprotected portions of the substrate, thereby forming the 3D relief in the substrate.Type: GrantFiled: October 30, 2020Date of Patent: April 25, 2023Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Mark Zavada, Matthew Tennis, David Weber, Alexander Meranto, Carlos Carratalá, Fernando Tomás Badenes, Louis Justus Fage, Ursula Good, Paul Andrew Edwards, Robert Roggers, John Hansen
-
Patent number: 11548306Abstract: Ink jet printing on a non-absorbent substrate involves a wet primer having a primer viscosity. The wet primer is applied on the non-absorbent substrate. An ink jet ink having an ink jet viscosity lower than the primer viscosity is jetted over the wet primer while the primer is still wet. The wet primer and ink are simultaneously cured on the substrate.Type: GrantFiled: February 22, 2021Date of Patent: January 10, 2023Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Michael Vincent Oberski, Paul Andrew Edwards
-
Publication number: 20210197581Abstract: Ink jet printing on a non-absorbent substrate involves a wet primer having a primer viscosity. The wet primer is applied on the non-absorbent substrate. An ink jet ink having an ink jet viscosity lower than the primer viscosity is jetted over the wet primer while the primer is still wet. The wet primer and ink are simultaneously cured on the substrate.Type: ApplicationFiled: February 22, 2021Publication date: July 1, 2021Inventors: Michael Vincent Oberski, Paul Andrew Edwards
-
Patent number: 10926553Abstract: Ink jet printing on a non-absorbent substrate involves a wet primer having a primer viscosity. The wet primer is applied on the non-absorbent substrate. An ink jet ink having an ink jet viscosity lower than the primer viscosity is jetted over the wet primer while the primer is still wet. The wet primer and ink are simultaneously cured on the substrate.Type: GrantFiled: April 4, 2016Date of Patent: February 23, 2021Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Michael Vincent Oberski, Paul Andrew Edwards
-
Publication number: 20210046774Abstract: A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. In an example embodiment, the introduced technique includes application of binder ink to a portion of the surface of a substrate using a digital inkjet process. This binder ink forms a barrier layer which protects the portion of the surface of the substrate. Next, a brushing process is applied to remove unprotected portions of the substrate, thereby forming the 3D relief in the substrate.Type: ApplicationFiled: October 30, 2020Publication date: February 18, 2021Inventors: Mark ZAVADA, Matthew Tennis, David Weber, Alexander Meranto, Carlos CARRATALÁ, Fernando Tomás Badenes, Louis Justus Fage, Ursula Good, Paul Andrew Edwards, Robert Roggers, John Hansen
-
Patent number: 10875342Abstract: Various of the disclosed embodiments concern printing systems configured to deposit flexible dye sublimation inks onto flexible transfer materials. Together, the flexible ink and transfer material allow images to be transferred onto complex-shaped, i.e. non-planar, surfaces of a substrate. The flexible ink may be, for example, a thermoformable UV dye sublimation ink or a superflexible UV dye sublimation ink. In order to transfer an image onto the substrate, the transfer material is pressed onto the surface of the substrate. The substrate, transfer material, or both are heated to a temperature sufficient to cause the ink to sublimate. During the sublimation process, dye is able to permeate the substrate and form a transferred image. The flexible ink formulation may also include a soluble or solvent-sensitive component. In such embodiments, a solvent can be jetted onto the substrate and/or transfer material to remove residual ink.Type: GrantFiled: December 18, 2017Date of Patent: December 29, 2020Assignee: ELECTRONICS FOR IMAGING, INC.Inventor: Paul Andrew Edwards
-
Patent number: 10836195Abstract: A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. In an example embodiment, the introduced technique includes application of binder ink to a portion of the surface of a substrate using a digital inkjet process. This binder ink forms a barrier layer which protects the portion of the surface of the substrate. Next, a brushing process is applied to remove unprotected portions of the substrate, thereby forming the 3D relief in the substrate.Type: GrantFiled: October 8, 2018Date of Patent: November 17, 2020Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Mark Zavada, Matthew Tennis, David Weber, Alexander Meranto, Carlos Carratalá, Fernando Tomás Badenes, Louis Justus Fage, Ursula Good, Paul Andrew Edwards, Robert Roggers, John Hansen
-
Publication number: 20200108650Abstract: A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. In an example embodiment, the introduced technique includes application of binder ink to a portion of the surface of a substrate using a digital inkjet process. This binder ink forms a barrier layer which protects the portion of the surface of the substrate. Next, a brushing process is applied to remove unprotected portions of the substrate, thereby forming the 3D relief in the substrate.Type: ApplicationFiled: October 8, 2018Publication date: April 9, 2020Inventors: Mark ZAVADA, Matthew TENNIS, David WEBER, Alexander MERANTO, Carlos CARRATALÁ, Fernando Tomás BADENES, Louis Justus FAGE, Ursula GOOD, Paul Andrew EDWARDS, Robert ROGGERS, John HANSEN
-
Publication number: 20180361769Abstract: Various of the disclosed embodiments concern printing systems configured to deposit flexible dye sublimation inks onto flexible transfer materials. Together, the flexible ink and transfer material allow images to be transferred onto complex-shaped, i.e. non-planar, surfaces of a substrate. The flexible ink may be, for example, a thermoformable UV dye sublimation ink or a superflexible UV dye sublimation ink. In order to transfer an image onto the substrate, the transfer material is pressed onto the surface of the substrate. The substrate, transfer material, or both are heated to a temperature sufficient to cause the ink to sublimate. During the sublimation process, dye is able to permeate the substrate and form a transferred image. The flexible ink formulation may also include a soluble or solvent-sensitive component. In such embodiments, a solvent can be jetted onto the substrate and/or transfer material to remove residual ink.Type: ApplicationFiled: December 18, 2017Publication date: December 20, 2018Inventor: Paul Andrew EDWARDS
-
Patent number: 9862849Abstract: An energy curable foam inhibition ink composition comprises an oligomer component consisting of 5-15% by weight of the ink composition, a photoinitiator component consisting of 5-15% by weight of ink composition, a monofunctional monomer component consisting of 20-40% by weight of ink composition, a difunctional monomer component consisting of 10-20% by weight of the ink composition, and an inhibitor additive consisting of 5-20% of the ink composition.Type: GrantFiled: January 6, 2017Date of Patent: January 9, 2018Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Donald A. Sloan, Paul Andrew Edwards
-
Patent number: 9844963Abstract: Various of the disclosed embodiments concern printing systems configured to deposit flexible dye sublimation inks onto flexible transfer materials. Together, the flexible ink and transfer material allow images to be transferred onto complex-shaped, i.e. non-planar, surfaces of a substrate. The flexible ink may be, for example, a thermoformable UV dye sublimation ink or a superflexible UV dye sublimation ink. In order to transfer an image onto the substrate, the transfer material is pressed onto the surface of the substrate. The substrate, transfer material, or both are heated to a temperature sufficient to cause the ink to sublimate. During the sublimation process, dye is able to permeate the substrate and form a transferred image. The flexible ink formulation may also include a soluble or solvent-sensitive component. In such embodiments, a solvent can be jetted onto the substrate and/or transfer material to remove residual ink.Type: GrantFiled: June 5, 2015Date of Patent: December 19, 2017Assignee: ELECTRONICS FOR IMAGING, INC.Inventor: Paul Andrew Edwards
-
Patent number: 9789706Abstract: Various of the disclosed embodiments concern removable ultraviolet (UV) curable dye sublimation ink to be used in various printing systems and printing methods. In some embodiments, the ink includes a dye component, a UV curable component, and a soluble or solvent-sensitive component. In order to print an image on a substrate, the ink is heated to a temperature sufficient to cause sublimation of at least the dye component. During the sublimation process, the dye is able to permeate the substrate and form a printed image. After the transfer process has been completed, a solvent can be jetted onto the substrate that causes the soluble component to dissolve. The washing process ensures that any residual ink remaining on the surface of the substrate is substantially removed.Type: GrantFiled: April 10, 2015Date of Patent: October 17, 2017Assignee: ELECTRONICS FOR IMAGING, INC.Inventor: Paul Andrew Edwards
-
Patent number: 9764564Abstract: A system and methods for printing and curing ink deposited on a substrate using a first light source and a second light source. In various embodiments, the first light source emits one or more wavelengths of electromagnetic radiation subtype C (UVC), and the second light source emits one or more wavelengths of electromagnetic radiation subtype A (UVA), subtype B (UVB), subtype V (UVV), or a combination thereof. The substrate is configured such that any ink deposited on the substrate by a printer head is predominantly exposed to the first light source prior to the second light source.Type: GrantFiled: March 6, 2015Date of Patent: September 19, 2017Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Dan-Cristian Grigore, Paul Andrew Edwards, Steven Billow
-
Publication number: 20170021639Abstract: Ink jet printing on a non-absorbent substrate involves a wet primer having a primer viscosity. The wet primer is applied on the non-absorbent substrate. An ink jet ink having an ink jet viscosity lower than the primer viscosity is jetted over the wet primer while the primer is still wet. The wet primer and ink are simultaneously cured on the substrate.Type: ApplicationFiled: April 4, 2016Publication date: January 26, 2017Inventors: Michael Vincent Oberski, Paul Andrew Edwards
-
Publication number: 20160297225Abstract: Various of the disclosed embodiments concern printing systems configured to deposit flexible dye sublimation inks onto flexible transfer materials. Together, the flexible ink and transfer material allow images to be transferred onto complex-shaped, i.e. non-planar, surfaces of a substrate. The flexible ink may be, for example, a thermoformable UV dye sublimation ink or a superflexible UV dye sublimation ink. In order to transfer an image onto the substrate, the transfer material is pressed onto the surface of the substrate. The substrate, transfer material, or both are heated to a temperature sufficient to cause the ink to sublimate. During the sublimation process, dye is able to permeate the substrate and form a transferred image. The flexible ink formulation may also include a soluble or solvent-sensitive component. In such embodiments, a solvent can be jetted onto the substrate and/or transfer material to remove residual ink.Type: ApplicationFiled: June 5, 2015Publication date: October 13, 2016Inventor: Paul Andrew EDWARDS
-
Publication number: 20160297224Abstract: Various of the disclosed embodiments concern removable ultraviolet (UV) curable dye sublimation ink to be used in various printing systems and printing methods. In some embodiments, the ink includes a dye component, a UV curable component, and a soluble or solvent-sensitive component. In order to print an image on a substrate, the ink is heated to a temperature sufficient to cause sublimation of at least the dye component. During the sublimation process, the dye is able to permeate the substrate and form a printed image. After the transfer process has been completed, a solvent can be jetted onto the substrate that causes the soluble component to dissolve. The washing process ensures that any residual ink remaining on the surface of the substrate is substantially removed.Type: ApplicationFiled: April 10, 2015Publication date: October 13, 2016Inventor: Paul Andrew EDWARDS
-
Publication number: 20160257135Abstract: A system and methods for printing and curing ink deposited on a substrate using a first light source and a second light source. In various embodiments, the first light source emits one or more wavelengths of electromagnetic radiation subtype C (UVC), and the second light source emits one or more wavelengths of electromagnetic radiation subtype A (UVA), subtype B (UVB), subtype V (UVV), or a combination thereof. The substrate is configured such that any ink deposited on the substrate by a printer head is predominantly exposed to the first light source prior to the second light source.Type: ApplicationFiled: March 6, 2015Publication date: September 8, 2016Inventors: Dan-Cristian GRIGORE, Paul Andrew EDWARDS, Steven BILLOW
-
Patent number: 9303097Abstract: Ink jet printing on a non-absorbent substrate involves a wet primer having a primer viscosity. The wet primer is applied on the non-absorbent substrate. An ink jet ink having an ink jet viscosity lower than the primer viscosity is jetted over the wet primer while the primer is still wet. The wet primer and ink are simultaneously cured on the substrate.Type: GrantFiled: March 7, 2012Date of Patent: April 5, 2016Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Michael Vincent Oberski, Paul Andrew Edwards
-
Patent number: 9260616Abstract: Gloss-controllable, radiation-curable inkjet inks cure quickly with minimal radiation exposure, enabling high-printing speed and low surface heating with controllable gloss on the printed image. Ink gloss can be controlled by varying the pinning energy to create the printed images with varied gloss from 10 to 100 gloss unit at 85° gloss measurement angle. After curing, the ink remains flexible on the surface, giving excellent performance on a wide range of surfaces, greatly expanding the range of applications for the ink. A gloss-controllable, radiation-curable inkjet ink may include approximately 8-18% of photo-initiators responding to UVA and UVV (UVA: 320-400 nm wavelengths, UVV: 400-450 nm wavelengths) radiation to initiate free radicals and optionally, other types of photo-initiators and approximately 60-85% of highly flexible mono-functional monomers.Type: GrantFiled: February 29, 2012Date of Patent: February 16, 2016Assignee: ELECTRONICS FOR IMAGING, INC.Inventors: Lianhui Cong, Daniel Francis Gloster, Paul Andrew Edwards