Patents by Inventor Paul Andrew Ringsrud

Paul Andrew Ringsrud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10352967
    Abstract: Systems and methods provide measurement of alternating current (AC) electrical parameters in an insulated wire without requiring a galvanic connection between the insulated wire and a test probe. Measurement systems or instruments may include a housing that includes both a non-contact voltage sensor and a non-contact current sensor. The measurement system obtains measurements from the voltage sensor and the current sensor during a measurement time interval and processes the measurements to determine AC electrical parameters of the insulated wire. The AC electrical parameters may be presented to an operator via a visual indicator device (e.g., display, lights). The AC electrical parameters may additionally or alternatively be communicated to an external device via a wired and/or wireless communications interface.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 16, 2019
    Assignee: FLUKE CORPORATION
    Inventors: Ronald Steuer, Peter Radda, Ricardo Rodriguez, David L. Epperson, Patrick Scott Hunter, Paul Andrew Ringsrud, Clark N. Huber, Christian Karl Schmitzer, Jeffrey Worones, Michael F. Gallavan
  • Patent number: 10119998
    Abstract: Systems and methods for measuring alternating current (AC) voltage of an insulated conductor (e.g., insulated wire) are provided, without requiring a galvanic connection between the conductor and a test electrode or probe. A non-galvanic contact (or “non-contact”) voltage measurement system includes a variable capacitance subsystem which operates to generate a variable capacitive voltage between an insulated conductor under test and earth ground. During measurement, the non-contact voltage measurement system varies the capacitance of the variable capacitance subsystem to change the impedance of a capacitive divider circuit between the insulated conductor under test and earth ground. By sequentially making two (or three) measurements across the variable capacitance subsystem, the AC voltage of the insulated conductor can be determined without requiring any galvanic connection to the insulated conductor.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: November 6, 2018
    Assignee: Fluke Corporation
    Inventors: Paul Andrew Ringsrud, Clark N. Huber, Michael F. Gallavan
  • Publication number: 20180136257
    Abstract: Systems and methods provide measurement of alternating current (AC) electrical parameters in an insulated wire without requiring a galvanic connection between the insulated wire and a test probe. Measurement systems or instruments may include a housing that includes both a non-contact voltage sensor and a non-contact current sensor. The measurement system obtains measurements from the voltage sensor and the current sensor during a measurement time interval and processes the measurements to determine AC electrical parameters of the insulated wire. The AC electrical parameters may be presented to an operator via a visual indicator device (e.g., display, lights). The AC electrical parameters may additionally or alternatively be communicated to an external device via a wired and/or wireless communications interface.
    Type: Application
    Filed: June 16, 2017
    Publication date: May 17, 2018
    Inventors: Ronald Steuer, Peter Radda, Ricardo Rodriguez, David L. Epperson, Patrick Scott Hunter, Paul Andrew Ringsrud, Clark N. Huber, Christian Karl Schmitzer, Jeffrey Worones, Michael F. Gallavan
  • Publication number: 20180128858
    Abstract: Systems and methods for measuring alternating current (AC) voltage of an insulated conductor (e.g., insulated wire) are provided, without requiring a galvanic connection between the conductor and a test electrode or probe. A non-galvanic contact (or “non-contact”) voltage measurement system includes a variable capacitance subsystem which operates to generate a variable capacitive voltage between an insulated conductor under test and earth ground. During measurement, the non-contact voltage measurement system varies the capacitance of the variable capacitance subsystem to change the impedance of a capacitive divider circuit between the insulated conductor under test and earth ground. By sequentially making two (or three) measurements across the variable capacitance subsystem, the AC voltage of the insulated conductor can be determined without requiring any galvanic connection to the insulated conductor.
    Type: Application
    Filed: November 7, 2016
    Publication date: May 10, 2018
    Inventors: Paul Andrew Ringsrud, Clark N. Huber, Michael F. Gallavan
  • Patent number: 9541581
    Abstract: Apparatus and methods for measuring current flowing through a conductor include a device comprised of a magnetically conductive loop having a plurality of strands and a magnetic field sensor. Each strand has a magnetically conductive material. The strands are configured to pass a magnetic field to a first magnetic field sensor that is positioned adjacent to an end of the first plurality of strands. The plurality of strands may be arranged in various patterns that allow the magnetically conductive loop to be more bendable or flexible than a current-clamp device.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: January 10, 2017
    Assignee: Fluke Corporation
    Inventor: Paul Andrew Ringsrud
  • Publication number: 20160116506
    Abstract: Apparatus and methods for measuring current flowing through a conductor include a device comprised of a magnetically conductive loop having a plurality of strands and a magnetic field sensor. Each strand has a magnetically conductive material. The strands are configured to pass a magnetic field to a first magnetic field sensor that is positioned adjacent to an end of the first plurality of strands. The plurality of strands may be arranged in various patterns that allow the magnetically conductive loop to be more bendable or flexible than a current-clamp device.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Applicant: FLUKE CORPORATION
    Inventor: Paul Andrew Ringsrud