Patents by Inventor Paul Arthur Layman

Paul Arthur Layman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7911006
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: March 22, 2011
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7700432
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. The integrated circuit structure includes a semiconductor layer with a major surface and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. The integrated circuit includes a capacitor having a bottom plate, dielectric layer and a top plate. In an associated method of manufacture, a first device region, is formed on a semiconductor layer. A field-effect transistor gate region is formed over the first device region. A capacitor comprising top and bottom layers and a dielectric layer is formed on the semiconductor layer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: April 20, 2010
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20100044767
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.
    Type: Application
    Filed: November 2, 2009
    Publication date: February 25, 2010
    Applicant: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7633118
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: December 15, 2009
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20090130810
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. The integrated circuit structure includes a semiconductor layer with a major surface and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. The integrated circuit includes a capacitor having a bottom plate, dielectric layer and a top plate. In an associated method of manufacture, a first device region, is formed on a semiconductor layer. A field-effect transistor gate region is formed over the first device region. A capacitor comprising top and bottom layers and a dielectric layer is formed on the semiconductor layer.
    Type: Application
    Filed: January 9, 2009
    Publication date: May 21, 2009
    Applicant: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7491610
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. The integrated circuit structure includes a semiconductor layer with a major surface and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. The integrated circuit includes a capacitor having a bottom plate, dielectric layer and a top plate. In an associated method of manufacture, a first device region. is formed on a semiconductor layer. A field-effect transistor gate region is formed over the first device region. A capacitor comprising top and bottom layers and a dielectric layer is formed on the semiconductor layer.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: February 17, 2009
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7259048
    Abstract: An architecture for creating a vertical silicon-on-insulator MOSFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain contact region formed in the surface. A relatively thin single crystalline layer is oriented vertically above the major surface and comprises a first source/drain doped region over which is located a doped channel region, over which is located a second source/drain region. An insulating layer is disposed adjacent said first and said second source/drain regions and said channel region, serving as the insulating material of the SOI device. In another embodiment, insulating material is adjacent only said first and said second source/drain regions. A conductive region is adjacent the channel region for connecting the back side of the channel region to ground, for example, to prevent the channel region from floating.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 21, 2007
    Assignee: Agere Systems, Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7242056
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. In one embodiment of the invention, a semiconductor device includes a first layer of semiconductor material and a first field-effect transistor having a first source/drain region formed in the first layer. A channel region of the transistor is formed over the first layer and an associated second source/drain region is formed over the channel region. The integrated circuit further includes a capacitor having a bottom plate, dielectric layer and a top capacitor plate.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: July 10, 2007
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7132297
    Abstract: A thin-film multilayer high-Q inductor having a ferromagnetic core and spanning at least three metal layers is formed by forming a plurality of parallel first metal runners on the semiconductor substrate. A plurality of first and second vertical conductive vias are formed in electrical connection with each end of the plurality of metal runners. A plurality of third and fourth conductive vias are formed over the plurality of first and second conductive vias and a plurality of second metal runners are formed interconnecting the plurality of third and fourth conductive vias. The first metal runners and second metal runners are oriented such that one end of a first metal runner is connected to an overlying end of a second metal runner by way of the first and third vertical conductive vias. The other end of the second metal runner is connected to the next metal one runner by way of the second and fourth vertical conductive vias., forming a continuously conductive structure having a generally helical shape.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: November 7, 2006
    Assignee: Agere Systems Inc.
    Inventors: Michelle D. Griglione, Paul Arthur Layman, Mohamed Laradji, J. Ross Thomson, Samir Chaudhry
  • Patent number: 7078280
    Abstract: An architecture for creating a vertical silicon-on-insulator MOSFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain contact region formed in the surface. A relatively thin single crystalline layer is oriented vertically above the major surface and comprises a first source/drain doped region over which is located a doped channel region, over which is located a second source/drain region. An insulating layer is disposed adjacent said first and said second source/drain regions and said channel region, serving as the insulating material of the SOI device. In another embodiment, insulating material is adjacent only said first and said second source/drain regions. A conductive region is adjacent the channel region for connecting the back side of the channel region to ground, for example, to prevent the channel region from floating.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: July 18, 2006
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7056783
    Abstract: An architecture for creating multiple operating voltage MOSFETs. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and first and second spaced-apart doped regions formed in the surface. A third doped region forming a channel of different conductivity type than the first region is positioned over the first region. A fourth doped region of a different conductivity and forming a channel is positioned over the second region. The process of creating the gate structure for each of the two transistors allows for the formation of oxide layers of different thickness between the two transistors. The transistors are therefore capable of operating at different operating voltages (including different threshold voltages). Each transistor further includes fifth and sixth layers positioned respectively over the third and fourth regions and having an opposite conductivity type with respect to the third and fourth regions.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: June 6, 2006
    Assignee: Agere Systems Inc.
    Inventors: Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Samir Chaudhry, Jack Qingsheng Zhao
  • Patent number: 7049199
    Abstract: A method for forming a plurality of MOSFETs wherein each one of the MOSFET has a unique predetermined threshold voltage. A doped well or tub is formed for each MOSFET. A patterned mask is then used to form a material line proximate each semiconductor well, wherein the width of the line is dependent upon the desired threshold voltage for the MOSFET. A tilted ion implantation is performed at an acute angle with respect to the substrate surface such that the ion beam passes through the material line. Thicker lines have a lower transmission coefficient for the ion beam and thus the intensity of the ion beam reaching the adjacent semiconductor well is reduced. By appropriate selection of the line width the dopant density in the well, and thus the final MOSFET threshold voltage, is controllable.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: May 23, 2006
    Assignee: Agere Systems Inc.
    Inventors: Paul Arthur Layman, Samir Chaudhry
  • Patent number: 7045835
    Abstract: An interconnect architecture for connecting a plurality of closely-spaced electrical elements on a first integrated circuit fabricated structure with operative circuits on a second integrated circuit fabricated structure. In one embodiment, the first integrated circuit fabricated structure comprises a plurality of photo sensors. Conductive interconnect elements on the first integrated circuit fabricated structure provide electrical connection between individual photo sensors and the operative circuitry on the second integrated circuit fabricated structure.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: May 16, 2006
    Assignee: Agere Systems Inc.
    Inventors: Paul Arthur Layman, John Russell McMacken
  • Patent number: 7033877
    Abstract: An architecture for creating a vertical JFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain doped region formed in the surface. A second doped region forming a channel of different conductivity type than the first region is positioned over the first region. A third doped region is formed over the second doped region having an opposite conductivity type with respect to the second doped region, and forming a source/drain region. A gate is formed over the channel to form a vertical JFET. In an associated method of manufacturing the semiconductor device, a first source/drain region is formed in a semiconductor layer. A field-effect transistor gate region, including a channel and a gate electrode, is formed over the first source/drain region. A second source/drain region is then formed over the channel having the appropriate conductivity type.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: April 25, 2006
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 6906962
    Abstract: A method for predetermining the initial state of the memory cells of a static random access memory such that when the memory is powered up the predetermined initial states are attained. The initial states can be predetermined by modifying one or more physical or operational parameters of the MOSFETS comprising the memory cells.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: June 14, 2005
    Assignee: Agere Systems Inc.
    Inventors: Paul Arthur Layman, Samir Chaudhry, James Gary Norman, J. Ross Thomson
  • Patent number: 6828561
    Abstract: A memory array operates as an alpha particle detector. A predetermined state is stored in each memory storage location. The operating voltage of the memory array is established at a voltage where the stored values are relatively stable and not subject to change except as a result of alpha particle impingement. Impinging alpha particles are detected by the state changes they cause in the memory storage locations.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: December 7, 2004
    Assignee: Agere Systems Inc.
    Inventors: Paul Arthur Layman, Samir Chaudhry, James Gary Norman, J. Ross Thomson
  • Publication number: 20040188737
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. Generally, the integrated circuit structure includes a semiconductor layer with a major surface formed along a plane thereof and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region.
    Type: Application
    Filed: April 5, 2004
    Publication date: September 30, 2004
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20040155264
    Abstract: An architecture for creating a vertical silicon-on-insulator MOSFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain contact region formed in the surface. A relatively thin single crystalline layer is oriented vertically above the major surface and comprises a first source/drain doped region over which is located a doped channel region, over which is located a second source/drain region. An insulating layer is disposed adjacent said first and said second source/drain regions and said channel region, serving as the insulating material of the SOI device. In another embodiment, insulating material is adjacent only said first and said second source/drain regions. A conductive region is adjacent the channel region for connecting the back side of the channel region to ground, for example, to prevent the channel region from floating.
    Type: Application
    Filed: February 6, 2004
    Publication date: August 12, 2004
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 6759730
    Abstract: A structure and a process for fabricating a bipolar junction transistor (BJT) that is compatible with the fabrication of a vertical MOSFET is disclosed. In the process, at least three layers of material are formed sequentially on a semiconductor substrate, where the substrate includes a buried collector region for the BJT and a source region for the MOSFET. After the at least three layers are formed on the substrate, two windows or trenches are formed in the layers. The first window terminates at the surface of the silicon substrate where the source region has been formed; the second window terminates at the buried collector region. Both windows are then filled with semiconductor material. For the BJT, the bottom portion of the window is filled with material of a conductivity type matching the conductivity of the buried collector, while the upper region of the semiconductor material is doped the opposite conductivity to form the BJT base.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: July 6, 2004
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20040110345
    Abstract: An architecture for creating a vertical JFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain doped region formed in the surface. A second doped region forming a channel of different conductivity type than the first region is positioned over the first region. A third doped region is formed over the second doped region having an opposite conductivity type with respect to the second doped region, and forming a source/drain region. A gate is formed over the channel to form a vertical JFET.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 10, 2004
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, Ross Thomson, Jack Qingsheng Zhao