Patents by Inventor Paul Arthur Sachenik

Paul Arthur Sachenik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11919803
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: March 5, 2024
    Assignee: Corning Incorporated
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Publication number: 20230040422
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: September 21, 2022
    Publication date: February 9, 2023
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Patent number: 11479501
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: October 25, 2022
    Assignee: Corning Incorporated
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Patent number: 11434166
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: September 6, 2022
    Assignee: Corning Incorporated
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Publication number: 20210230055
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 29, 2021
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Publication number: 20210009470
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 14, 2021
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Patent number: 10829409
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: November 10, 2020
    Assignee: Corning Incorporated
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Publication number: 20180247726
    Abstract: Disclosed are AZO films deposited on a transparent substrate by pulse DC using an oxide target with a composition in the range 0.5-2 wt % Al2O3, desirably at temperature above 325° C., resulting in films showing columnar grain structure with columns extending from the top to the bottom of the film, and small lateral grain size (less than 70 nm from substrate to top of film). The film has low resistivity at less than 10 Ohm/square at a thickness less than 400 nm, resistivity is desirably unchanged by annealing at temperatures of up to 450° C.
    Type: Application
    Filed: April 26, 2018
    Publication date: August 30, 2018
    Inventors: Robert Alan Bellman, Jeremy Curtis Clark, Paul Arthur Sachenik, Lynn Bernard Simpson, Lili Tian
  • Patent number: 10017849
    Abstract: A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200° C.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 10, 2018
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Ta-Ko Chuang, Robert George Manley, Mark Alejandro Quesada, Paul Arthur Sachenik
  • Patent number: 9984786
    Abstract: Disclosed are AZO films deposited on a transparent substrate by pulse DC using an oxide target with a composition in the range 0.5-2 wt % Al2O3, desirably at temperature above 325° C., resulting in films showing columnar grain structure with columns extending from the top to the bottom of the film, and small lateral grain size (less than 70 nm from substrate to top of film). The film has low resistivity at less than 10 Ohm/square at a thickness less than 400 nm, resistivity is desirably unchanged by annealing at temperatures of up to 450° C.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: May 29, 2018
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Jeremy Curtis Clark, Paul Arthur Sachenik, Lynn Bernard Simpson, Lili Tian
  • Publication number: 20170269266
    Abstract: Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 0 degrees to about 60 degrees from normal under an illuminant. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and a refractive index gradient. In one or more embodiments, the refractive index includes a refractive index that increases from a first surface at the interface between the substrate and the optical film to a second surface. The refractive index gradient may be formed from a compositional gradient and/or a porosity gradient.
    Type: Application
    Filed: June 1, 2017
    Publication date: September 21, 2017
    Inventors: Kaveh Adib, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, James Joseph Price, Paul Arthur Sachenik
  • Publication number: 20170218503
    Abstract: A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200° C.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 3, 2017
    Inventors: Robert Alan Bellman, Ta-Ko Chuang, Robert George Manley, Mark Alejandro Quesada, Paul Arthur Sachenik
  • Patent number: 9703011
    Abstract: Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 0 degrees to about 60 degrees from normal under an illuminant. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and a refractive index gradient. In one or more embodiments, the refractive index includes a refractive index that increases from a first surface at the interface between the substrate and the optical film to a second surface. The refractive index gradient may be formed from a compositional gradient and/or a porosity gradient.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: July 11, 2017
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, James Joseph Price, Paul Arthur Sachenik
  • Publication number: 20150279500
    Abstract: Disclosed are AZO films deposited on a transparent substrate by pulse DC using an oxide target with a composition in the range 0.5-2 wt % Al2O3, desirably at temperature above 325° C., resulting in films showing columnar grain structure with columns extending from the top to the bottom of the film, and small lateral grain size (less than 70 nm from substrate to top of film). The film has low resistivity at less than 10 Ohm/square at a thickness less than 400 nm, resistivity is desirably unchanged by annealing at temperatures of up to 450° C.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 1, 2015
    Applicant: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Jeremy Curtis Clark, Paul Arthur Sachenik, Lynn Bernard Simpson, Lili Tian
  • Publication number: 20150174625
    Abstract: A textured article that includes a transparent substrate having at least one primary surface and a glass, glass-ceramic or ceramic composition; a micro-textured surface on the primary surface of the substrate, the micro-textured surface comprising a plurality of hillocks; and a nano-structured surface on the micro-textured surface, the nano-structured surface comprising a plurality of nano-sized protrusions or a multilayer coating comprising a plurality of layers having a nano-scale thickness. Further, the hillocks have an average height of about 10 to about 1000 nm and an average longest lateral cross-sectional dimension of about 1 to about 100 ?m, and the nano-sized protrusions have an average height of about 10 to about 500 nm and an average longest lateral cross-sectional dimension of about 10 to about 500 nm. The substrate may be chemically strengthened with a compressive stress greater than about 500 MPa and a compressive depth-of-layer greater than about 15 ?m.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 25, 2015
    Inventors: Shandon Dee Hart, Karl William Koch, III, Domenico Tulli, Prantik Mazumder, Valerio Pruneri, Paul Arthur Sachenik, Lili Tian, Johann Osmond, Albert Carrilero
  • Patent number: 9023457
    Abstract: Described herein are various methods for making textured articles, textured articles that have improved fingerprint resistance, and methods of using the textured articles. The methods generally make use of masks comprising nanostructured metal-containing features to produce textured surfaces that also comprise nanostructured features. These nanostructured features in the textured surfaces can render the surfaces hydrophobic and oleophobic, thereby beneficially providing the articles with improved fingerprint resistance relative to similar or identical articles that lack the texturing.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 5, 2015
    Assignee: Corning Incorporated
    Inventors: Albert Carrilero, Prantik Mazumder, Johann Osmond, Valerio Pruneri, Paul Arthur Sachenik, Lili Tian
  • Publication number: 20140334006
    Abstract: Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 0 degrees to about 60 degrees from normal under an illuminant. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and a refractive index gradient. In one or more embodiments, the refractive index includes a refractive index that increases from a first surface at the interface between the substrate and the optical film to a second surface. The refractive index gradient may be formed from a compositional gradient and/or a porosity gradient.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 13, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Kaveh Adib, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, Paul Arthur Sachenik
  • Publication number: 20140144772
    Abstract: A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200° C.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 29, 2014
    Inventors: Robert Alan Bellman, Ta-Ko Chuang, Robert George Manley, Mark Alejandro Quesada, Paul Arthur Sachenik
  • Publication number: 20140106150
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be suppressed by inserting a nanoporous crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 17, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Heather Bossard Decker, Shandon Dee Hart, Guangli Hu, James Joseph Price, Paul Arthur Sachenik
  • Publication number: 20130157007
    Abstract: Described herein are various methods for making textured articles, textured articles that have improved fingerprint resistance, and methods of using the textured articles. The methods generally make use of masks comprising nanostructured metal-containing features to produce textured surfaces that also comprise nanostructured features. These nanostructured features in the textured surfaces can render the surfaces hydrophobic and oleophobic, thereby beneficially providing the articles with improved fingerprint resistance relative to similar or identical articles that lack the texturing.
    Type: Application
    Filed: November 28, 2012
    Publication date: June 20, 2013
    Inventors: Albert Carrilero, Prantik Mazumder, Johann Osmond, Valerio Pruneri, Paul Arthur Sachenik, Lili Tian