Patents by Inventor Paul B. Blanch

Paul B. Blanch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9468398
    Abstract: The present invention describes a method and apparatus for detecting and quantifying intrinsic positive end-expiratory pressure (PEEPi) of a respiratory patient breathing with the assistance of a ventilator. A processing device receives respiratory airway data from one or more sensors adapted to non-invasively monitor a respiratory patient, calculates from the respiratory airway data two or more parameters that are indicative of or quantify intrinsic positive end-expiratory pressure of the patient, and generates an indication intrinsic positive end-expiratory pressure (PEEPi).
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: October 18, 2016
    Assignee: CONVERGENT ENGINEERING, INC.
    Inventors: Paul B. Blanch, Vikas Meka, Neil R. Euliano
  • Publication number: 20140171817
    Abstract: The present invention describes a method and apparatus for detecting and quantifying intrinsic positive end-expiratory pressure (PEEPi) of a respiratory patient breathing with the assistance of a ventilator. A processing device receives respiratory airway data from one or more sensors adapted to non-invasively monitor a respiratory patient, calculates from the respiratory airway data two or more parameters that are indicative of or quantify intrinsic positive end-expiratory pressure of the patient, and generates an indication intrinsic positive end-expiratory pressure (PEEPi).
    Type: Application
    Filed: September 28, 2013
    Publication date: June 19, 2014
    Inventors: Paul B. Blanch, Vikas Meka, Neil R. Euliano
  • Patent number: 8672858
    Abstract: A method of creating a noninvasive predictor of both physiologic and imposed patient effort of breathing from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this noninvasive predictor is based on linear or non-linear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: March 18, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Patent number: 8617083
    Abstract: A method of creating a non-invasive predictor of both physiologic and imposed patient effort from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this non-invasive predictor is based on linear or nonlinear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: December 31, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Patent number: 8544466
    Abstract: The present invention describes a method and apparatus for detecting and quantifying intrinsic positive end-expiratory pressure (PEEPi) of a respiratory patient breathing with the assistance of a ventilator. A processing device receives respiratory airway data from one or more sensors adapted to non-invasively monitor a respiratory patient, calculates from the respiratory airway data two or more parameters that are indicative of or quantify intrinsic positive end-expiratory pressure of the patient, and generates a predicted quantitative value for intrinsic positive end-expiratory pressure based on the two or more parameters. The respiratory airway data is transformed into a predicted quantitative value for intrinsic positive end-expiratory pressure (PEEPi).
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: October 1, 2013
    Assignee: Convergent Engineering, Inc.
    Inventors: Paul B. Blanch, Vikas Meka, Neil R. Euliano
  • Publication number: 20120215081
    Abstract: A method of creating a noninvasive predictor of both physiologic and imposed patient effort of breathing from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this noninvasive predictor is based on linear or non-linear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 23, 2012
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Patent number: 8122883
    Abstract: Embodiments of the present invention described and shown in the specification and drawings include a system and method for monitoring the ventilation support provided by a ventilator and automatically supplying a breathing gas to a patient via a breathing circuit that is in fluid communication with the lungs of the patient.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 28, 2012
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michael J. Banner, Paul B. Blanch, Neil R. Euliano, Jose C. Principe
  • Publication number: 20090293877
    Abstract: The present invention describes a method and apparatus for detecting and quantifying intrinsic positive end-expiratory pressure (PEEPi) of a respiratory patient breathing with the assistance of a ventilator. A processing device receives respiratory airway data from one or more sensors adapted to non-invasively monitor a respiratory patient, calculates from the respiratory airway data two or more parameters that are indicative of or quantify intrinsic positive end-expiratory pressure of the patient, and generates a predicted quantitative value for intrinsic positive end-expiratory pressure based on the two or more parameters. The respiratory airway data is transformed into a predicted quantitative value for intrinsic positive end-expiratory pressure (PEEPi).
    Type: Application
    Filed: July 6, 2009
    Publication date: December 3, 2009
    Inventors: Paul B. Blanch, Vikas Meka, Neil R. Euliano
  • Publication number: 20090272382
    Abstract: A method of creating a non-invasive predictor of both physiologic and imposed patient effort from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this non-invasive predictor is based on linear or nonlinear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Application
    Filed: July 8, 2009
    Publication date: November 5, 2009
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Patent number: 7588543
    Abstract: A method of creating a non-invasive predictor of both physiologic and imposed patient effort from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this non-invasive predictor is based on linear or non-linear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: September 15, 2009
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Patent number: 7562657
    Abstract: The present invention describes a method and apparatus for non-invasive prediction of the “intrinsic positive end-expiratory pressure” (PEEPi) which is secondary to a trapping of gas, over and above that which is normal in the lungs; the presence of PEEPi imposes an additional workload upon the spontaneously breathing patient. Several indicators or markers are presented to detect and quantify PEEPi non-invasively The markers may include an expiratory air flow versus expiratory air volume trajectory, an expiratory carbon dioxide flow versus expiratory air volume trajectory, an expiratory carbon dioxide volume to expiratory air volume ratio, an expiratory air flow at onset of inhalation, a model of an expiratory waveform, a peak to mid-exhalation airflow ratio, duration of reduced exhaled airflow, and a Capnograph waveform shape.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: July 21, 2009
    Assignee: Convergent Engineering, Inc.
    Inventors: Paul B. Blanch, Vikas Meka, Neil R. Euliano
  • Patent number: 7425201
    Abstract: A method of creating a non-invasive predictor of both physiologic and imposed patient effort from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this non-invasive predictor is based on linear or non-linear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 16, 2008
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Patent number: 7210478
    Abstract: Embodiments of the present invention described and shown in the specification and drawings include a system and method for monitoring the ventilation support provided by a ventilator that is supplying a breathing gas to a patient via a breathing circuit that is in fluid communication with the lungs of the patient.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: May 1, 2007
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michael J. Banner, Neil Russell Euliano, II, Jose C. Principe, Paul B. Blanch
  • Patent number: 7156095
    Abstract: A method and apparatus for operating a ventilator in a primary electronic mode or in a back-up pneumatic mode during primary electronic mode failure. A method and apparatus for operating a ventilator in an advanced mode, having a number of ventilatory modes, or in a basic mode, having a limited number of ventilatory modes is also disclosed.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: January 2, 2007
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Richard J. Melker, Michael J. Banner, Samsun Lampotang, Paul B. Blanch, Neil R. Euliano, Ronald G. Carovano
  • Patent number: 7066173
    Abstract: Embodiments of the present invention described and shown in the specification and drawings include a system and method for monitoring the ventilation support provided by a ventilator and automatically supplying a breathing gas to a patient via a breathing circuit that is in fluid communication with the lungs of the patient.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: June 27, 2006
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michael J. Banner, Paul B. Blanch, Neil R. Euliano, Jose C. Principe
  • Patent number: 7051736
    Abstract: An endotracheal tube pressure monitoring system for an endotracheal tube having at least pressure sensor in communication with a major lumen of the endotracheal tube, and a pressure monitoring subsystem in operative communication with the pressure sensor. The system may also have at least one fluid pressure line in fluid communication with the major lumen and in operative communication with the pressure monitoring subsystem to monitor the pressure of fluid within each respective fluid pressure line, and a purging subsystem in fluid communication with the fluid pressure line. Each fluid pressure line that is in fluid communication with the purging subsystem being selectively purged by the purging subsystem when pressure monitoring subsystem determines the respective pressure line has become obstructed. Purging the fluid pressure line maintains the patency of the pressure line so that accurate pressure measurements within the endotracheal tube can be obtained for calculation of parameters in lung mechanics.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: May 30, 2006
    Assignee: University of Florida
    Inventors: Michael J. Banner, Paul B. Blanch, Neil R. Euliano
  • Patent number: 6976487
    Abstract: A method and apparatus for operating a ventilator in a primary electronic mode or in a back-up pneumatic mode during primary electronic mode failure. A method and apparatus for operating a ventilator in an advanced mode, having a number of ventilatory modes, or in a basic mode, having a limited number of ventilatory modes is also disclosed.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: December 20, 2005
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Richard J. Melker, Michael J. Banner, Samsun Lampotang, Paul B. Blanch, Neil R. Euliano, Ronald G. Carovano
  • Patent number: 6796305
    Abstract: The present invention provides a system and method for monitoring the ventilation support provided by a ventilator that is supplying a breathing gas to a patient via a breathing circuit that is in fluid communication with the lungs of the patient. The ventilator has a plurality of selectable ventilator setting controls governing the supply of ventilation support from the ventilator, each setting control selectable to a level setting.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 28, 2004
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michael J. Banner, Paul B. Blanch, Neil R. Euliano, Jose C. Principe
  • Publication number: 20040040560
    Abstract: A method of creating a non-invasive predictor of both physiologic and imposed patient effort from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this non-invasive predictor is based on linear or non-linear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Application
    Filed: August 29, 2003
    Publication date: March 4, 2004
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Publication number: 20040003814
    Abstract: An endotracheal tube pressure monitoring system for an endotracheal tube having at least pressure sensor in communication with a major lumen of the endotracheal tube, and a pressure monitoring subsystem in operative communication with the pressure sensor. The system may also have at least one fluid pressure line in fluid communication with the major lumen and in operative communication with the pressure monitoring subsystem to monitor the pressure of fluid within each respective fluid pressure line, and a purging subsystem in fluid communication with the fluid pressure line. Each fluid pressure line that is in fluid communication with the purging subsystem being selectively purged by the purging subsystem when pressure monitoring subsystem determines the respective pressure line has become obstructed. Purging the fluid pressure line maintains the patency of the pressure line so that accurate pressure measurements within the endotracheal tube can be obtained for calculation of parameters in lung mechanics.
    Type: Application
    Filed: June 30, 2003
    Publication date: January 8, 2004
    Inventors: Michael J. Banner, Paul B. Blanch, Neil R. Euliano