Patents by Inventor Paul Barger

Paul Barger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10577291
    Abstract: A method for producing jet-range hydrocarbons includes passing a stream comprising renewable C4 olefins to an oligomerization reactor containing a zeolite catalyst to produce an oligomerized effluent, separating the oligomerized effluent to produce a jet range hydrocarbon stream and a recycle stream comprising C8 olefins, and passing at least a portion of the recycle stream to the oligomerization reactor. A first at least about 10% of the jet-range hydrocarbon stream hydrocarbons boil between n-octane and n-undecane and wherein a second at least about 10% of the jet-range hydrocarbon stream hydrocarbons boil between n-dodecane and n-pentadecane.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 3, 2020
    Assignee: UOP LLC
    Inventors: Stanley Joseph Frey, Geoffrey William Fichtl, Paul Barger, Scott M. Roney, Steven Lee Krupa, Christopher P. Nicholas
  • Patent number: 9567541
    Abstract: A jet-range hydrocarbon product includes a mixture of paraffins. The mixture exhibits a freeze point of less than or equal to about ?70° C., a 95% distillation point of greater than or equal to about 275° C., and a smooth boiling point curve that is characterized as having no intervals of the boiling point curve having a slope that is steeper than 4° C./mass % as defined by ASTM standard D2887 between mass recovered ranges of about 20% to about 80%. The steepness of the boiling point curve slope is calculated over any 10 mass % increments within the specified mass % ranges.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: February 14, 2017
    Assignee: UOP LLC
    Inventors: Stanley Joseph Frey, Geoffrey William Fichtl, Paul Barger, Scott M. Roney, Christopher P. Nicholas
  • Publication number: 20150045593
    Abstract: A jet-range hydrocarbon product includes a mixture of paraffins. The mixture exhibits a freeze point of less than or equal to about ?70° C., a 95% distillation point of greater than or equal to about 275° C., and a smooth boiling point curve that is characterized as having no intervals of the boiling point curve having a slope that is steeper than 4° C./mass % as defined by ASTM standard D2887 between mass recovered ranges of about 20% to about 80%. The steepness of the boiling point curve slope is calculated over any 10 mass % increments within the specified mass % ranges.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Stanley Joseph Frey, Geoffrey William Fichtl, Paul Barger, Scott M. Roney, Christopher P. Nicholas
  • Publication number: 20150045599
    Abstract: A method for producing jet-range hydrocarbons includes passing a stream comprising renewable C4 olefins to an oligomerization reactor containing a zeolite catalyst to produce an oligomerized effluent, separating the oligomerized effluent to produce a jet range hydrocarbon stream and a recycle stream comprising C8 olefins, and passing at least a portion of the recycle stream to the oligomerization reactor. A first at least about 10% of the jet-range hydrocarbon stream hydrocarbons boil between n-octane and n-undecane and wherein a second at least about 10% of the jet-range hydrocarbon stream hydrocarbons boil between n-dodecane and n-pentadecane.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Stanley Joseph Frey, Geoffrey William Fichtl, Paul Barger, Scott M. Roney, Steven Lee Krupa, Christopher P. Nicholas
  • Patent number: 8758599
    Abstract: One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, a lanthanide-series metal including one or more elements of atomic numbers 57-71 of the periodic table, and a support. Generally, an average bulk density of the catalyst is about 0.300-about 0.620 gram per cubic centimeter, and an atomic ratio of the lanthanide-series metal:noble metal is less than about 1.3:1. Moreover, the lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than about two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: June 24, 2014
    Assignee: UOP LLC
    Inventors: Mark Paul Lapinski, Paul Barger
  • Patent number: 8609917
    Abstract: One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more non-aromatic compounds to convert about 90%, by weight, of one or more C6+ non-aromatic compounds.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin Paul Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Patent number: 8598395
    Abstract: One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more aromatic methylating agents to form a product having a mole ratio of methyl to phenyl of at least about 0.1:1 greater than the feed.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 3, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin Paul Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Patent number: 8563795
    Abstract: One exemplary embodiment can be a process using an aromatic methylating agent. Generally, the process includes reacting an effective amount of the aromatic methylating agent having at least one of an alkane, a cycloalkane, an alkane radical, and a cycloalkane radical with one or more aromatic compounds. As such, at least one of the one or more aromatic compounds may be converted to one or more higher methyl substituted aromatic compounds to provide a product having a greater mole ratio of methyl to phenyl than a feed.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 22, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Patent number: 8414798
    Abstract: Embodiments of a process for producing syngas comprising hydrogen and carbon monoxide from a gas stream comprising methane are provided. The process comprises the step of contacting the gas stream with a two-component catalyst system comprising an apatite component and a perovskite component at reaction conditions effective to convert the methane to the syngas.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: April 9, 2013
    Assignee: UOP LLC
    Inventors: Colleen Costello, Lisa King, Paul Barger, Deng-Yang Jen, Robert B. James, Kurt Vanden Bussche
  • Publication number: 20130015103
    Abstract: One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, a lanthanide-series metal including one or more elements of atomic numbers 57-71 of the periodic table, and a support. Generally, an average bulk density of the catalyst is about 0.300-about 0.620 gram per cubic centimeter, and an atomic ratio of the lanthanide-series metal:noble metal is less than about 1.3:1. Moreover, the lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than about two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Applicant: UOP, LLC
    Inventors: Mark Paul Lapinski, Paul Barger
  • Publication number: 20120104322
    Abstract: Embodiments of a process for producing syngas comprising hydrogen and carbon monoxide from a gas stream comprising methane are provided. The process comprises the step of contacting the gas stream with a two-component catalyst system comprising an apatite component and a perovskite component at reaction conditions effective to convert the methane to the syngas.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Applicant: UOP LLC
    Inventors: Colleen Costello, Lisa King, Paul Barger, Deng-Yang Jan, Robert B. James, Kurt Vanden Bussche
  • Publication number: 20110178354
    Abstract: One exemplary embodiment can be a process using an aromatic methylating agent. Generally, the process includes reacting an effective amount of the aromatic methylating agent having at least one of an alkane, a cycloalkane, an alkane radical, and a cycloalkane radical with one or more aromatic compounds. As such, at least one of the one or more aromatic compounds may be converted to one or more higher methyl substituted aromatic compounds to provide a product having a greater mole ratio of methyl to phenyl than a feed.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Inventors: Antoine Negiz, Edwin Paul Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger, Paula L. Bogdan
  • Publication number: 20110178356
    Abstract: One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more aromatic methylating agents to form a product having a mole ratio of methyl to phenyl of at least about 0.1:1 greater than the feed.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Inventors: Antoine Negiz, Edwin P. Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Publication number: 20110174692
    Abstract: One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more non-aromatic compounds to convert about 90%, by weight, of one or more C6+ non-aromatic compounds.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Inventors: Antoine Negiz, Edwin Paul Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger
  • Publication number: 20080039664
    Abstract: A process for the autocatalytic production of organic hydroperoxides and ultra low sulfur diesel boiling range hydrocarbons is disclosed. The organic hydroperoxides react with sulfur compounds to produce sulfones, and the sulfones can be removed from the diesel boiling range hydrocarbons to provide ultra low sulfur diesel.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 14, 2008
    Inventors: Christopher Gosling, Ronald Gatan, Paul Barger
  • Publication number: 20070004953
    Abstract: The invention provides a method to avoid catalyst damage and achieve longer catalyst life by selecting appropriate materials for reactor spacers, liners, catalyst binders, and supports, in particular, by not using crystalline silica-containing and high phosphorus-containing materials, if the presence of even small amount of steam is anticipated. In addition, alkali metals and alkaline earth metals are avoided due to potential damage to the catalyst.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Inventors: Timur Voskoboynikov, Paul Barger, John Chen
  • Publication number: 20070004950
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Inventors: Wharton Sinkler, Robert Broach, Natasha Erdman, Thomas Reynolds, John Chen, Stephen Wilson, Paul Barger