Patents by Inventor Paul Benni

Paul Benni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10261010
    Abstract: According to an aspect of the present invention, a near infrared spectroscopy (NIRS) sensor assembly, system, and method for measuring a characteristic of a biological tissue is provided. The NIRS sensor assembly includes a light source, at least one light detector, and a subject contact layer. The light source is operable to emit light at one or more predetermined wavelengths. The light detector has an active area for detecting light emitted by the light source and passed through the biological tissue. The detector is operable to produce signals representative of the detected light. The subject contact layer is disposed to cover one or both of the light detector and the light source. The subject contact layer has at least one optically transmissive portion.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: April 16, 2019
    Assignee: CAS Medical Systems, Inc.
    Inventors: Karen Duffy, Matthew Dalene, John Gamelin, Paul Benni
  • Patent number: 9888873
    Abstract: A NIRS sensor assembly includes a light source, a light detector, a first insulating layer, an EMI shielding layer, and a second insulating layer. The first insulating layer covers an exposed portion of the light detector. An optically transparent portion of the first insulating layer is aligned with an active area of the light detector. The EMI shielding layer covers the first insulating layer. An optically transparent portion of the EMI shielding layer is aligned with the active area of the light detector. The second insulating layer covers the EMI shielding layer and the first insulating layer. An optically transparent portion of the second insulating layer is aligned with the active area of the at least one light detector.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 13, 2018
    Assignee: CAS Medical Systems, Inc.
    Inventors: Matthew Dalene, Karen Duffy, John Gamelin, Paul Benni, William Kosturko
  • Patent number: 9848808
    Abstract: An apparatus and method for non-invasively determining a blood oxygen parameter value of a subject's tissue is provided. An embodiment of the method includes the steps of: a) providing a spectrophotometric sensor that includes a processing portion and a transducer, b) detecting at least a portion of transmitted light after passage through the subject's tissue and producing initial signal data from the detected light; and c) using the processing portion to: (i) determine a value representative of an attenuation of at least one wavelength of light detected; (ii) determine whether the representative attenuation value is outside a predefined range of attenuation values; and (iii) determine the blood oxygen parameter value using a first interrogation or an alternate interrogation setting.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: December 26, 2017
    Assignee: CAS Medical Systems, Inc.
    Inventor: Paul Benni
  • Patent number: 9364175
    Abstract: A method and apparatus for non-invasively determining a blood oxygen saturation level within an organ of a subject using direct application of a near infrared spectrophotometric sensor is provided. The method includes the steps of: a) transmitting a light signal directly into the subject's organ using the sensor; b) sensing a first intensity of the light signal and a second intensity of the light signal, after the light signal travels a predetermined distance through the organ of the subject; c) determining an attenuation of the light signal along multiple different wavelengths using the sensed first intensity and sensed second intensity; d) determining a difference in attenuation of the light signal between wavelengths; and e) determining the blood oxygen saturation level within the subject's organ using the difference in attenuation between wavelengths.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 14, 2016
    Assignee: CAS Medical Systems, Inc.
    Inventor: Paul Benni
  • Publication number: 20150308946
    Abstract: According to an aspect of the present invention, a near infrared spectroscopy (NIRS) sensor assembly, system, and method for measuring a characteristic of a biological tissue is provided. The NIRS sensor assembly includes a light source, at least one light detector, and a subject contact layer. The light source is operable to emit light at one or more predetermined wavelengths. The light detector has an active area for detecting light emitted by the light source and passed through the biological tissue. The detector is operable to produce signals representative of the detected light. The subject contact layer is disposed to cover one or both of the light detector and the light source. The subject contact layer has at least one optically transmissive portion.
    Type: Application
    Filed: December 10, 2013
    Publication date: October 29, 2015
    Applicant: CAS Medical Systems, Inc
    Inventors: Karen Duffy, Matthew Dalene, John Gamelin, Paul Benni
  • Patent number: 8965472
    Abstract: A near infrared spectrophotometric (NIRS) sensor assembly for non-invasive monitoring of blood oxygenation levels in a subject's body is provided that includes a pad, at least one light source, a near light detector, a far light detector, and a cover. The light source is operative to emit near infrared light signals of a plurality of different wavelengths. The near light detector is separated from the light source by a first distance that is great enough to position the first light detector outside of an optical shunt field extending out from the light source. The far light detector is substantially linearly aligned with the near light detector and light source, and is separated from the near light detector by a second distance, wherein the second distance is greater than the first distance.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: February 24, 2015
    Inventor: Paul Benni
  • Publication number: 20150025344
    Abstract: An apparatus and method for non-invasively determining a blood oxygen parameter value of a subject's tissue is provided. An embodiment of the method includes the steps of: a) providing a spectrophotometric sensor that includes a processing portion and a transducer, b) detecting at least a portion of transmitted light after passage through the subject's tissue and producing initial signal data from the detected light; and c) using the processing portion to: (i) determine a value representative of an attenuation of at least one wavelength of light detected; (ii) determine whether the representative attenuation value is outside a predefined range of attenuation values; and (iii) determine the blood oxygen parameter value using a first interrogation or an alternate interrogation setting.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Inventor: Paul Benni
  • Publication number: 20150018651
    Abstract: A near-infrared spectrophotometric system (e.g., a cerebral oximeter) includes a sensor portion and a monitor portion. The monitor portion includes a processor that runs an algorithm which utilizes the amount of detected light to determine the value of the oxygen concentration (e.g., the absolute level of oxygen concentration). The monitor portion also includes a visual display that displays the determined oxygen concentration values in various formats. The monitor portion may also include an audible device (e.g., a speaker), that provides audible indications of the determined oxygen concentration values. Various visual indicators may include, for example, color-coded graphs of the determined oxygenation values to alert the system user, for example, whether one hemisphere of the brain, or one or more regions of the brain, is in danger of adverse and potentially permanent damage. Also, data may be pre-processed by selecting the most clinically concerning sensor value (e.g.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 15, 2015
    Inventors: Paul Benni, Bo Chen, Andrew Kersey
  • Publication number: 20140171761
    Abstract: A NIRS sensor assembly includes a light source, a light detector, a first insulating layer, an EMI shielding layer, and a second insulating layer. The first insulating layer covers an exposed portion of the light detector. An optically transparent portion of the first insulating layer is aligned with an active area of the light detector. The EMI shielding layer covers the first insulating layer. An optically transparent portion of the EMI shielding layer is aligned with the active area of the light detector. The second insulating layer covers the EMI shielding layer and the first insulating layer. An optically transparent portion of the second insulating layer is aligned with the active area of the at least one light detector.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 19, 2014
    Applicant: CAS Medical Systems, Inc.
    Inventors: Matthew Dalene, Karen Duffy, John Gamelin, Paul Benni, William Kosturko
  • Patent number: 8396526
    Abstract: According to the present invention, a method and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue is provided. The method comprises the steps of: 1) providing a near infrared spectrophotometric sensor operable to transmit light along a plurality of wavelengths into the subject's tissue; 2) sensing the light transmitted into the subject's tissue using the sensor, and producing signal data representative of the light sensed from the subject's tissue; 3) processing the signal data to account for physical characteristics of the subject; and 4) determining the blood oxygen saturation level within the subject's tissue using a difference in attenuation between the wavelengths. The apparatus includes a sensor having a light source and at least one light detector, which sensor is operably connected to a processor.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: March 12, 2013
    Assignee: CAS Medical Systems, Inc.
    Inventor: Paul Benni
  • Patent number: 8391942
    Abstract: A method and apparatus for determining cerebral oxygen saturation in a subject is provided. The method comprises the steps of: a) determining tissue oxygen saturation values using a NIRS type oximeter over a period of time; b) modeling a rate of change in the tissue oxygen saturation values; and c) determining an amount of time until a predetermined tissue oxygen saturation value is reached using the modeling of the tissue oxygen saturation values.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: March 5, 2013
    Assignee: CAS Medical Systems, Inc.
    Inventor: Paul Benni
  • Publication number: 20130023744
    Abstract: A method and apparatus for non-invasively determining a blood oxygen saturation level within an organ of a subject using direct application of a near infrared spectrophotometric sensor is provided. The method includes the steps of: a) transmitting a light signal directly into the subject's organ using the sensor; b) sensing a first intensity of the light signal and a second intensity of the light signal, after the light signal travels a predetermined distance through the organ of the subject; c) determining an attenuation of the light signal along multiple different wavelengths using the sensed first intensity and sensed second intensity; d) determining a difference in attenuation of the light signal between wavelengths; and e) determining the blood oxygen saturation level within the subject's organ using the difference in attenuation between wavelengths.
    Type: Application
    Filed: November 24, 2010
    Publication date: January 24, 2013
    Applicant: CAS MEDICAL SYSTEMS, INC.
    Inventor: Paul Benni
  • Publication number: 20120271130
    Abstract: A method and apparatus for determining an index indicative of a subject's response to an oxygen desaturation condition is provided. The method includes the steps of: a) providing a NIRS tissue sensor, a pulse oximetry sensor, and a processor in communication with the NIRS tissue sensor and the pulse oximetry sensor; b) sensing the subject's tissue using the NIRS tissue sensor and producing first signals; c) sensing the subject's tissue using the pulse oximetry sensor and producing second signals; d) processing the first signals to determine a change in tissue oxygen saturation values, processing the second signals to determine a change in arterial oxygen saturation values; and e) determining the index indicative of the subject's response to the oxygen desaturation condition using the change in tissue oxygen saturation values and the change in arterial oxygen saturation values.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 25, 2012
    Applicant: CAS MEDICAL SYSTEMS, INC.
    Inventor: Paul Benni
  • Publication number: 20110028812
    Abstract: A method and apparatus for non-invasively determining a blood oxygenation level within a subject's tissue is provided. The method includes the steps of: a) providing a spectrophotometric sensor operable to transmit light into the subject's tissue, and to sense the light; b) inputting into the sensor at least one of the subject's age, weight, brain development, and head size; c) spectrophotometrically sensing the subject's tissue along a plurality of wavelengths using the sensor, and producing signal data from sensing the subject's tissue; and d) processing the signal data utilizing the at least one of the subject's age, weight, brain development, and head size, to determine the blood oxygen saturation level within the subject's tissue using a difference in attenuation between the wavelengths.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 3, 2011
    Applicant: CAS MEDICAL SYSTEMS, INC.
    Inventor: Paul Benni
  • Publication number: 20100105998
    Abstract: A near infrared spectrophotometric sensor for non-invasive monitoring of blood oxygenation levels in a subject's spinal cord tissue and spinal cord blood vessels is provided. The sensor includes at least one light source and at least one light detector. The light source is operative to emit near infrared light signals of a plurality of different wavelengths. The light detector is operative to sense light signals emitted from the light source and passed through the subject's spinal tissue, and to produce a sensor signal representative of the sensed light signals The light source is separated from the light detector by a distance representative of a distance from a first vertebrae structure of a human spine to a second vertebrae structure of the human spine, to permit alignment of the light source and detector with the first and second vertebrae structure.
    Type: Application
    Filed: October 28, 2009
    Publication date: April 29, 2010
    Applicant: CAS MEDICAL SYSTEMS, INC.
    Inventor: Paul Benni
  • Publication number: 20100087719
    Abstract: A method and apparatus for determining cerebral oxygen saturation in a subject is provided. The method comprises the steps of: a) determining tissue oxygen saturation values using a NIRS type oximeter over a period of time; b) modeling a rate of change in the tissue oxygen saturation values; and c) determining an amount of time until a predetermined tissue oxygen saturation value is reached using the modeling of the tissue oxygen saturation values.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Applicant: CAS Medical Systems, Inc.
    Inventor: Paul Benni
  • Publication number: 20090281403
    Abstract: According to the present invention, a method and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue is provided. The method comprises the steps of: 1) providing a near infrared spectrophotometric sensor operable to transmit light along a plurality of wavelengths into the subject's tissue; 2) sensing the light transmitted into the subject's tissue using the sensor, and producing signal data representative of the light sensed from the subject's tissue; 3) processing the signal data to account for physical characteristics of the subject; and 4) determining the blood oxygen saturation level within the subject's tissue using a difference in attenuation between the wavelengths. The apparatus includes a sensor having a light source and at least one light detector, which sensor is operably connected to a processor.
    Type: Application
    Filed: May 10, 2006
    Publication date: November 12, 2009
    Applicant: CAS MEDICAL SYSTEMS INC.
    Inventor: Paul Benni
  • Publication number: 20090182209
    Abstract: A near infrared spectrophotometric (NIRS) sensor assembly for non-invasive monitoring of blood oxygenation levels in a subject's body is provided that includes a pad, at least one light source, a near light detector, a far light detector, and a cover. The light source is operative to emit near infrared light signals of a plurality of different wavelengths. The near light detector is separated from the light source by a first distance that is great enough to position the first light detector outside of an optical shunt field extending out from the light source. The far light detector is substantially linearly aligned with the near light detector and light source, and is separated from the near light detector by a second distance, wherein the second distance is greater than the first distance.
    Type: Application
    Filed: October 18, 2006
    Publication date: July 16, 2009
    Applicant: CAS Medical System, Inc.
    Inventor: Paul Benni
  • Publication number: 20090108205
    Abstract: A near infrared spectrophotometric (NIRS) sensor apparatus is provided that includes at least one NIRS sensor and a mounting device. The sensor has at least one light source, at least one light detector, and a flexible pad. The light source and the light detector are mounted on the flexible pad, which flexible pad has a peripheral edge that extends around the entire periphery of the pad. The light source and light detectors are configured for connection to an electro-optical cable. The mounting device is operable to secure the sensor to a subject, which mounting device is sized to cover the sensor and contact the subject around the entire peripheral edge of the pad. The mounting device includes a light barrier that at least substantially blocks light from passing through the mounting device.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 30, 2009
    Applicant: CAS Medical Systems, Inc.
    Inventors: Karen Duffy, Paul Benni, George Brocksieper
  • Publication number: 20080300473
    Abstract: A spectroscopy system that may be used for spectrophotometric oxygenation monitoring of tissue includes a monitor portion and a sensor portion. The sensor portion generally includes a light source and one or more light detectors. The sensor portion may attach to a human to sense light signals from the light source that have traversed biological tissue, the light signals ultimately being used by the system to determine biological tissue blood hemoglobin oxygenation levels. The monitor portion generally includes a processor and a visual display. A laser beam combiner may couple a plurality of laser diode output light signals into one optical fiber. To stabilize the output of each of the laser diodes, an optical fiber light stabilizer is coupled to the combined laser diode output. The optical fiber light stabilizer redistributes the modes in the optical fiber such that the higher-order modes are filled until an equilibrium mode distribution is established.
    Type: Application
    Filed: December 14, 2006
    Publication date: December 4, 2008
    Applicant: CAS Medical Systems , Inc.
    Inventor: Paul Benni