Patents by Inventor Paul Bohn

Paul Bohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150276730
    Abstract: The present invention relates to a method and kit for detecting bacteria in a sample. Substrate having a surface comprising an interdigitated Au electrode array and a plurality of siderophores specific to the bacteria and covalently attached to the surface. In one embodiment, the siderophore may contain a free OH (alcohol), amine, or carboxylic acid to which linker may be attached via ester (on the OH), amide (on the amine) or reverse the ester or amide using the siderophore carboxyl. The linker chain can then be short or long with and without heteroatom substitution to improve solubility as needed. The linker can terminate with a thiol which will react with a gold surface. Alternatively, the linker can terminate with another alcohol, amine or acid which can then be attached to corresponding functionality on the surface of choice.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 1, 2015
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC OFFICE OF TECHNOLOGY TRANSFER
    Inventors: Marvin J. Miller, Cheng Ji, Paul Bohn, Sean Branagan, Yang Yang
  • Publication number: 20150268050
    Abstract: Methods and apparatus ascertain a geographic position based on topographic contours of ocean surfaces. Observed ocean topographic contours are matched to predicted ocean topography and/or ocean topographic information stored in a database. Such systems and methods do not necessarily require INS, GPS, RF beacons, optical beacons or celestial sightings. These systems and methods may be used as references to correct INS. These systems and methods may be used to ascertain a geographic location of an aircraft, spacecraft, watercraft, landcraft (vehicle), person or the like. Similarly, these systems and methods may be used as part of a guidance system for guiding a craft to a destination. These systems and methods may be used in tandem with, or as backups for, other types of navigation or guidance systems or as one input to a navigation filter.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 24, 2015
    Inventors: Juha-Pekka J. Laine, Gregory P. Blasche, Paul Bohn, Robin Mark Adrian Dawson, Walter Foley, Benjamin F. Lane, Sean McClain, Erik L. Waldron, Stephen P. Smith
  • Publication number: 20140267755
    Abstract: A star camera system that includes an optical system configured to focus radiation from a star to be imaged onto a collector that is in the form of an electron bombarded active pixel sensor (EBAPS) configured to provide high gain. The EBAPS comprising a photocathode disposed in a vacuum is configured to release electrons into the vacuum when exposed to radiation focused thereon by the optical system. The EBAPS includes an active pixel sensor anode disposed distant from the photocathode in the vacuum. An electric field is generated by a voltage source to direct the electrons from the photocathode to the active pixel sensor anode. Furthermore, the collector is mounted on a translation device configured to move the collector relative to the optical system by a predetermined amount of less than pixel size in the focal plane of the optical system to increase image resolution of a plurality of images.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Gregory Blasche, John J. Boyle, Paul Bohn, Robin M. Dawson, Benjamin F. Lane, Erik L. Waldron
  • Publication number: 20140267641
    Abstract: A star camera system that includes an optical system configured to focus radiation from a star to be imaged onto a collector. Specifically, the collector is in the form of an electron bombarded active pixel sensor (EBAPS) configured to provide high gain. The EBAPS comprising a photocathode disposed in a vacuum is configured to release electron into a vacuum when exposed to radiation focused thereon by the optical system. In addition, the EBAPS includes an active pixel sensor anode disposed distant from the photocathode in the vacuum. An electric field is generated by a voltage source to direct electrons from the photocathode to the active pixel sensor anode to thereby generate an image of the star.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Gregory Blasche, John J. Boyle, Paul Bohn, Robin M. Dawson, Benjamin F. Lane, Erik L. Waldron, Stephen P. Smith
  • Publication number: 20100028614
    Abstract: The present invention provides a method of forming a molecular membrane using soft lithography. The method includes forming a pattern having at least one nanoscale feature in a moldable polymer composition and deploying at least a portion of the pattern adjacent a first substrate.
    Type: Application
    Filed: March 9, 2007
    Publication date: February 4, 2010
    Inventors: Anne Shim, John Rogers, Feng Hua, Keqing Fa, Paul Bohn
  • Publication number: 20070217957
    Abstract: A method of bonding layers to form a structure, comprises curing a first adhesive while squeezing a first layer and a multilayer structure together between a first backing and a second backing. The multilayer structure comprises a substrate and a second layer, and the first adhesive is between and in contact with the first layer and the second layer. Furthermore, the first layer and the second layer each have a thickness of at most 100 ?m, and at least one of the first backing and the second backing comprises a first elastic polymer.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 20, 2007
    Inventors: Bruce Flachsbart, Mark Shannon, Paul Bohn, Jonathan Sweedler