Patents by Inventor Paul Buchele

Paul Buchele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10472098
    Abstract: Embodiments of Reaction Wheel Assembly (RWA) systems are provided, which include multi-faceted bracket structures to which RWAs are mounted. In one embodiment, the RWA system includes a bracket structure, which is assembled from multiple (e.g., two to four) interchangeable panels. Each bracket panel may define or include a mount bracket to which an RWA is mounted. In certain embodiments, the bracket panels may include integral bearing cartridge features, which contain the spin bearings of the RWAs. The interchangeable panels may have interconnect features, which align and which possibly interlock to position the panels in a precise angular relationship when the multi-faceted bracket structure is assembled. In other embodiments wherein the bracket structure is assembled from two interchangeable panels or produced as a single piece, the multi-faceted bracket structure may have a peaked form factor supportive of two RWAs, which are mounted to the bracket structure in a back-to-back relationship.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: November 12, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Terence Marshall, Thom Kreider, Paul Buchele
  • Patent number: 10023327
    Abstract: Reaction wheel assemblies having relatively compact and lightweight form factors (referred to as “small scale” RWAs) are disclosed. Such small scale RWAs are well-suited for deployment onboard relatively small satellites, but are not restricted to usage within any particular device or platform. In one embodiment, the small scale RWA includes a primary support platform to which a rotor is coupled for rotation about a spin axis. An axially-expanded face-to-face (DF) duplex bearing pair is disposed between the rotor shaft and the support platform. The DF duplex bearing pair includes first and second rolling element bearings positioned around an intermediate portion of the rotor shaft. The first and second rolling element bearings have first and second bearing load lines, respectively, which are spaced by a tailored bearing load line separation (SLL).
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: July 17, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Terence Marshall, Paul Buchele, Pietro Dileonardo, James T. Hanks
  • Publication number: 20180111705
    Abstract: Embodiments of Reaction Wheel Assembly (RWA) systems are provided, which include multi-faceted bracket structures to which RWAs are mounted. In one embodiment, the RWA system includes a bracket structure, which is assembled from multiple (e.g., two to four) interchangeable panels. Each bracket panel may define or include a mount bracket to which an RWA is mounted. In certain embodiments, the bracket panels may include integral bearing cartridge features, which contain the spin bearings of the RWAs. The interchangeable panels may have interconnect features, which align and which possibly interlock to position the panels in a precise angular relationship when the multi-faceted bracket structure is assembled. In other embodiments wherein the bracket structure is assembled from two interchangeable panels or produced as a single piece, the multi-faceted bracket structure may have a peaked form factor supportive of two RWAs, which are mounted to the bracket structure in a back-to-back relationship.
    Type: Application
    Filed: October 25, 2016
    Publication date: April 26, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Terence Marshall, Thom Kreider, Paul Buchele
  • Publication number: 20170313445
    Abstract: Reaction wheel assemblies having relatively compact and lightweight form factors (referred to as “small scale” RWAs) are disclosed. Such small scale RWAs are well-suited for deployment onboard relatively small satellites, but are not restricted to usage within any particular device or platform. In one embodiment, the small scale RWA includes a primary support platform to which a rotor is coupled for rotation about a spin axis. An axially-expanded face-to-face (DF) duplex bearing pair is disposed between the rotor shaft and the support platform. The DF duplex bearing pair includes first and second rolling element bearings positioned around an intermediate portion of the rotor shaft. The first and second rolling element bearings have first and second bearing load lines, respectively, which are spaced by a tailored bearing load line separation (SLL).
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Terence Marshall, Paul Buchele, Pietro Dileonardo, James T. Hanks
  • Patent number: 9618077
    Abstract: Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: April 11, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Goold, Paul Buchele, Timothy Hindle, Dale Thomas Ruebsamen
  • Patent number: 9612117
    Abstract: An integrated Reaction Wheel Assembly Array (RWAA) includes a multi-rotor chassis having a plurality of bearing locating features. A plurality of rotor assemblies is mounted to the multi-rotor chassis. Each rotor assembly includes a rotor having a rotor shaft, a spin motor coupled to the rotor and configured to drive rotation of the rotor about a spin axis, and a first spin bearing assembly disposed around an end portion of the rotor shaft. The first spin bearing pilots to one of the bearing locating features to position or locate the spin axis of the rotor assembly in a predetermined fixed spatial relationship relative to the spin axes of the other rotor assemblies.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 4, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Terence Marshall, Paul Buchele, Pietro Dileonardo, Theodis Johnson
  • Publication number: 20170023092
    Abstract: Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 26, 2017
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Goold, Paul Buchele, Timothy Hindle, Dale Thomas Ruebsamen
  • Publication number: 20160010991
    Abstract: Embodiments of an integrated Reaction Wheel Assembly Array (RWAA) are provided, as are embodiments of a multi-rotor chassis suitable for usage within an RWAA. In one embodiment, the RWAA includes a multi-rotor chassis having a plurality of bearing locating features. A plurality of rotor assemblies is mounted to the multi-rotor chassis. Each rotor assembly includes a rotor having a rotor shaft, a spin motor coupled to the rotor and configured to drive rotation of the rotor about a spin axis, and a first spin bearing assembly disposed around an end portion of the rotor shaft. The first spin bearing pilots to one of the bearing locating features to position or locate the spin axis of the rotor assembly in a predetermined fixed spatial relationship relative to the spin axes of the other rotor assemblies.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 14, 2016
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Terence Marshall, Paul Buchele, Pietro Dileonardo, Theodis Johnson
  • Patent number: 9188189
    Abstract: Embodiments of isolators including magnetically-assisted thermal compensation devices are provided, as are embodiments of magnetically-assisted thermal compensation devices. In one embodiment, the isolator includes a damper assembly and a magnetically-assisted thermal compensator (“TC”). The magnetically-assisted TC includes, in turn, a TC chamber fluidly coupled to the damper assembly and configured to exchange damping fluid therewith. A TC piston is slidably disposed within the TC chamber and exposed to damping fluid when the TC chamber is filled therewith. A TC bellows is sealingly coupled to the TC piston and exerts a resilient bias force thereon. A magnetic preload system is further coupled to the TC piston and exerts a magnetic bias force thereon, which combines with the resilient bias force provided by the TC bellows to impart the magnetically-assisted TC with a predetermined pressure profile over the operative temperature range of the isolator.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: November 17, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Goold, Ben Smith, Paul Buchele
  • Patent number: 9045219
    Abstract: A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 2, 2015
    Assignee: HONEYWELL INTERNATIONAL, INC.
    Inventors: Pablo Bandera, Paul Buchele
  • Patent number: 9046001
    Abstract: Embodiments of a gas turbine engine are provided, as are embodiments of an annular bearing support damper and embodiments of a method for manufacturing an annular bearing support damper. In one embodiment, the gas turbine engine includes engine housing and a rotor assembly disposed within the engine housing. A rotor bearing supports the rotor assembly within the engine housing, and an annular bearing support damper is positioned between the rotor bearing and the engine housing. The support damper includes an annular housing assembly having a damping fluid annulus. An array of circumferentially-spaced damper pistons is movably coupled to the annular housing assembly and fluidly communicates with the damping fluid annulus. The damper pistons are fixedly coupled to the rotor bearing and moves in conjunction therewith to force the flow of damping fluid around the annulus during engine operation to reduce the transmissions of vibrations to the engine housing.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: June 2, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Timothy Hindle, Tim Daniel Barber, Paul Buchele
  • Publication number: 20150145191
    Abstract: Embodiments of an isolator having a nested flexure device are provided, as are embodiments of a nested flexure device and methods for the production thereof. In one embodiment isolator includes an isolator body and a nested flexure device mounted to an end portion of the isolator body. The nested flexure device includes an inner flexure array compliant along first and second perpendicular axes orthogonal to the working axis of the isolator. The nested flexure device further includes an outer flexure array compliant along the first and second perpendicular axes, coupled in series with the inner flexure array, and circumscribing at least a portion of the inner flexure array.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Ben Smith, Paul Buchele, Kevin Witwer
  • Publication number: 20140374974
    Abstract: Embodiments of isolators including magnetically-assisted thermal compensation devices are provided, as are embodiments of magnetically-assisted thermal compensation devices. In one embodiment, the isolator includes a damper assembly and a magnetically-assisted thermal compensator (“TC”). The magnetically-assisted TC includes, in turn, a TC chamber fluidly coupled to the damper assembly and configured to exchange damping fluid therewith. A TC piston is slidably disposed within the TC chamber and exposed to damping fluid when the TC chamber is filled therewith. A TC bellows is sealingly coupled to the TC piston and exerts a resilient bias force thereon. A magnetic preload system is further coupled to the TC piston and exerts a magnetic bias force thereon, which combines with the resilient bias force provided by the TC bellows to impart the magnetically-assisted TC with a predetermined pressure profile over the operative temperature range of the isolator.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Ryan Goold, Ben Smith, Paul Buchele
  • Patent number: 8444121
    Abstract: Systems are provided for damping vibrations from a payload. In an embodiment, and by way of example only, the system includes an isolation strut and a gas line. The isolation strut includes a bellows and a piston. The bellows has a first end and a second end, the first end being enclosed, and the second end attached to the piston to define a chamber. The piston includes a damping annulus therethrough having a gas inlet and a gas outlet. The gas inlet provides flow communication to the chamber of the bellows. The gas line is coupled to the isolation strut and is in fluid communication with the gas outlet thereof. The system is hermetically sealed to contain a gas therein.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: May 21, 2013
    Assignee: Honeywell International Inc.
    Inventors: Steven Hadden, Paul Buchele, Jim Boyd
  • Publication number: 20130051982
    Abstract: Embodiments of a gas turbine engine are provided, as are embodiments of an annular bearing support damper and embodiments of a method for manufacturing an annular bearing support damper. In one embodiment, the gas turbine engine includes engine housing and a rotor assembly disposed within the engine housing. A rotor bearing supports the rotor assembly within the engine housing, and an annular bearing support damper is positioned between the rotor bearing and the engine housing. The support damper includes an annular housing assembly having a damping fluid annulus. An array of circumferentially-spaced damper pistons is movably coupled to the annular housing assembly and fluidly communicates with the damping fluid annulus. The damper pistons are fixedly coupled to the rotor bearing and moves in conjunction therewith to force the flow of damping fluid around the annulus during engine operation to reduce the transmissions of vibrations to the engine housing.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Timothy Hindle, Tim D. Barber, Paul Buchele
  • Patent number: 8312782
    Abstract: A self-contained momentum control system (MCS) for a spacecraft is provided for small satellites. The MCS features a miniaturized gyroscopic rotor with a rotational speed in excess of 20,000 RPM. The MCS includes at least three control moment gyroscopic mechanical assemblies (CMAs) rigidly mounted within a single enclosure, where each CMA mounted in an orientation whereby the longitudinal axis of each CMA is either orthogonal to every other CMA or is parallel to another CMA but in the opposite orientation. In order to further reduce the size of the MCS, an electronics package that is configured to interface command and control signals with and to provide power to the CMAs is included within the MCS enclosure. A plurality of shock isolation devices are used to secure each of the CMAs to the enclosure in order to reduce the launch load upon the CMAs thereby allowing the use of smaller rotor spin bearings. The MCS enclosure surrounding the CMAs and support structure is hermetically sealed.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 20, 2012
    Assignee: Honeywell International Inc.
    Inventors: Brett McMickell, Paul Buchele, Gary Lynwood Gisler, James Andrus
  • Patent number: 8262479
    Abstract: A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: September 11, 2012
    Assignee: Honeywell International Inc.
    Inventors: Pablo Bandera, Paul Buchele
  • Patent number: 7997157
    Abstract: A control moment gyroscope (CMG) is provided for deployment on a spacecraft. The CMG includes an inner gimbal assembly (IGA), which, in turn, includes an IGA housing, a rotor rotatably coupled to the IGA housing, and a spin motor coupled to the IGA housing and configured to rotate the rotor about a spin axis. The CMG further comprises a stator assembly, which includes: (i) a stator assembly housing rotatably coupled to the IGA housing, and (ii) a torque module assembly coupled to the stator assembly housing and configured to rotate the IGA about a gimbal axis. A gimbal bearing is disposed between the IGA housing and the stator assembly housing. The gimbal bearing resides between the spin axis and the torque module assembly such that the distance between the gimbal bearing and the spin axis is less than the distance between the gimbal bearing and the torque module assembly.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Honeywell International Inc.
    Inventors: Dennis Wayne Smith, Paul Buchele, Carlos J. Stevens, Stephen Edward Fiske
  • Patent number: 7985162
    Abstract: A signal torque module assembly (STMA) is provided for use within a control moment gyroscope of the type that includes a rotor assembly. The STMA comprises a torque module assembly (TMA), which includes: (i) a TMA housing, (ii) a torque motor coupled to the TMA housing, and (iii) a gear train coupled to the TMA housing and mechanically coupling the torque motor to the rotor assembly. A signal module assembly is coupled to the TMA housing, and an elongated connector electrically couples the signal module assembly and the rotor assembly. The elongated connector extends through the gear train.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: July 26, 2011
    Assignee: Honeywell International Inc.
    Inventors: Paul Buchele, Torey Davis
  • Publication number: 20100320330
    Abstract: A self-contained momentum control system (MCS) for a spacecraft is provided for small satellites. The MCS features a miniaturized gyroscopic rotor with a rotational speed in excess of 20,000 RPM. The MCS includes at least three control moment gyroscopic mechanical assemblies (CMAs) rigidly mounted within a single enclosure, where each CMA mounted in an orientation whereby the longitudinal axis of each CMA is either orthogonal to every other CMA or is parallel to another CMA but in the opposite orientation. In order to further reduce the size of the MCS, an electronics package that is configured to interface command and control signals with and to provide power to the CMAs is included within the MCS enclosure. A plurality of shock isolation devices are used to secure each of the CMAs to the enclosure in order to reduce the launch load upon the CMAs thereby allowing the use of smaller rotor spin bearings. The MCS enclosure surrounding the CMAs and support structure is hermetically sealed.
    Type: Application
    Filed: December 16, 2009
    Publication date: December 23, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Brett McMickell, Paul Buchele, Gary Lynwood Gisler, James Andrus