Patents by Inventor Paul C. Ho

Paul C. Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11826253
    Abstract: Methods and apparatuses for regulating aortic regurgitation are provided. A catheter shaft is advanced through vasculature so that a flexible occluding membrane coupled to the catheter shaft is positioned within the aorta, typically the ascending aorta above the Sinus of Valsalva and coronary ostia. Blood flow in the aorta causes the flexible occluding membrane to alternate between an expanded occluding configuration while in diastole and a collapsed lesser occluding configuration is systole. The flexible occluding membrane thereby acts as a temporary aortic valve. The flexible occluding membrane is generally conical in shape, with the tip of the cone disposed closer to the aorta than the proximal rim. In diastole, blood flow expands the flexible occluding membrane so that the proximal rim apposes the inner wall of the aorta. The flexible occluding membrane will have one or more openings to allow perfusion of the coronary arteries in diastole.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: November 28, 2023
    Assignee: HOCOR CARDIOVASCULAR TECHNOLOGIES LLC
    Inventor: Paul C. Ho
  • Patent number: 11253356
    Abstract: A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve including a reversibly expandable occluder surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluder is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The stent(s) displace the native tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the stent(s) at the aortic annulus with precision and relative ease.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: February 22, 2022
    Assignee: HOCOR CARDIOVASCULAR TECHNOLOGIES, LLC
    Inventor: Paul C. Ho
  • Publication number: 20210169641
    Abstract: Methods and apparatuses for regulating aortic regurgitation are provided. A catheter shaft is advanced through vasculature so that a flexible occluding membrane coupled to the catheter shaft is positioned within the aorta, typically the ascending aorta above the Sinus of Valsalva and coronary ostia. Blood flow in the aorta causes the flexible occluding membrane to alternate between an expanded occluding configuration while in diastole and a collapsed lesser occluding configuration is systole. The flexible occluding membrane thereby acts as a temporary aortic valve. The flexible occluding membrane is generally conical in shape, with the tip of the cone disposed closer to the aorta than the proximal rim. In diastole, blood flow expands the flexible occluding membrane so that the proximal rim apposes the inner wall of the aorta. The flexible occluding membrane will have one or more openings to allow perfusion of the coronary arteries in diastole.
    Type: Application
    Filed: July 21, 2020
    Publication date: June 10, 2021
    Inventor: Paul C. HO
  • Patent number: 10881412
    Abstract: Methods and systems for regulating aortic regurgitation during aortic valve replacement or repair procedures utilize a temporary aortic valve (TAV) catheter and a controller. The temporary aortic valve catheter has an expandable occlusion device which can partially occlude the aortic lumen during ventricular diastole with a lesser occlusion during ventricular systole. Exemplary balloon structures include multiple, independently inflatable balloons which are inflated in synchrony with the cardiac cycle by the controller. By controlling aortic regurgitation, the repair or replacement protocols can be conducted with less interference from blood flow.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: January 5, 2021
    Assignee: HOCOR Cardiovascular Technologies, LLC
    Inventor: Paul C. Ho
  • Patent number: 10751181
    Abstract: Methods and apparatuses for regulating aortic regurgitation are provided. A catheter shaft is advanced through vasculature so that a flexible occluding membrane coupled to the catheter shaft is positioned within the aorta, typically the ascending aorta above the Sinus of Valsalva and coronary ostia. Blood flow in the aorta causes the flexible occluding membrane to alternate between an expanded occluding configuration while in diastole and a collapsed lesser occluding configuration is systole. The flexible occluding membrane thereby acts as a temporary aortic valve. The flexible occluding membrane is generally conical in shape, with the tip of the cone disposed closer to the aorta than the proximal rim. In diastole, blood flow expands the flexible occluding membrane so that the proximal rim apposes the inner wall of the aorta. The flexible occluding membrane will have one or more openings to allow perfusion of the coronary arteries in diastole.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: August 25, 2020
    Assignee: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. Ho
  • Publication number: 20190069902
    Abstract: Methods and systems for regulating aortic regurgitation during aortic valve replacement or repair procedures utilize a temporary aortic valve (TAV) catheter and a controller. The temporary aortic valve catheter has an expandable occlusion device which can partially occlude the aortic lumen during ventricular diastole with a lesser occlusion during ventricular systole. Exemplary balloon structures include multiple, independently inflatable balloons which are inflated in synchrony with the cardiac cycle by the controller. By controlling aortic regurgitation, the repair or replacement protocols can be conducted with less interference from blood flow.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 7, 2019
    Inventor: Paul C. Ho
  • Publication number: 20190038407
    Abstract: A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve including a reversibly expandable occluding means surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The stent(s) displace the native tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the stent(s) at the aortic annulus with precision and relative ease.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 7, 2019
    Inventor: Paul C. HO
  • Patent number: 10098644
    Abstract: Methods and systems for regulating aortic regurgitation during aortic valve replacement or repair procedures utilize a temporary aortic valve (TAV) catheter and a controller. The temporary aortic valve catheter has an expandable occlusion device which can partially occlude the aortic lumen during ventricular diastole with a lesser occlusion during ventricular systole. Exemplary balloon structures include multiple, independently inflatable balloons which are inflated in synchrony with the cardiac cycle by the controller. By controlling aortic regurgitation, the repair or replacement protocols can be conducted with less interference from blood flow.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: October 16, 2018
    Assignee: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. Ho
  • Patent number: 10080654
    Abstract: A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve including a reversibly expandable occluding medium surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding medium is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The stent(s) displace the native tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the stent(s) at the aortic annulus with precision and relative ease.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: September 25, 2018
    Assignee: HOCOR Cardiovascular Technologies, LLC
    Inventor: Paul C. Ho
  • Publication number: 20180092742
    Abstract: Methods and apparatuses for regulating aortic regurgitation are provided. A catheter shaft is advanced through vasculature so that a flexible occluding membrane coupled to the catheter shaft is positioned within the aorta, typically the ascending aorta above the Sinus of Valsalva and coronary ostia. Blood flow in the aorta causes the flexible occluding membrane to alternate between an expanded occluding configuration while in diastole and a collapsed lesser occluding configuration is systole. There flexible occluding membrane thereby acts as a temporary aortic valve. The flexible occluding membrane is generally conical in shape, with the tip of the cone disposed closer to the aorta than the proximal rim. In diastole, blood flow expands the flexible occluding membrane so that the proximal rim apposes the inner wall of the aorta. The flexible occluding membrane will have one or more openings to allow perfusion of the coronary arteries in diastole.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventor: Paul C. HO
  • Patent number: 9855143
    Abstract: Methods and apparatuses for regulating aortic regurgitation are provided. A catheter shaft is advanced through vasculature so that a flexible occluding membrane coupled to the catheter shaft is positioned within the aorta, typically the ascending aorta above the Sinus of Valsalva and coronary ostia. Blood flow in the aorta causes the flexible occluding membrane to alternate between an expanded occluding configuration while in diastole and a collapsed lesser occluding configuration is systole. There flexible occluding membrane thereby acts as a temporary aortic valve. The flexible occluding membrane is generally conical in shape, with the tip of the cone disposed closer to the aorta than the proximal rim. In diastole, blood flow expands the flexible occluding membrane so that the proximal rim apposes the inner wall of the aorta. The flexible occluding membrane will have one or more openings to allow perfusion of the coronary arteries in diastole.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: January 2, 2018
    Assignee: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. Ho
  • Patent number: 9700410
    Abstract: A catheter adapted for placement in the ascending aorta comprises a central catheter mechanism and a balloon structure or other occluding structure at its distal end. The catheter may be placed over the aortic arch such that the occluding structure is placed in the ascending aorta just above the Sinus of Valsalva and coronary ostia. Once in place, the occluding structure is inflated to control blood flow through the aorta during aortic valve ablation and replacement protocols.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: July 11, 2017
    Assignee: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. Ho
  • Publication number: 20170079783
    Abstract: A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve including a reversibly expandable occluding means surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The stent(s) displace the native tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the stent(s) at the aortic annulus with precision and relative ease.
    Type: Application
    Filed: September 27, 2016
    Publication date: March 23, 2017
    Inventor: Paul C. HO
  • Publication number: 20160346079
    Abstract: Methods and apparatuses for regulating aortic regurgitation are provided. A catheter shaft is advanced through vasculature so that a flexible occluding membrane coupled to the catheter shaft is positioned within the aorta, typically the ascending aorta above the Sinus of Valsalva and coronary ostia. Blood flow in the aorta causes the flexible occluding membrane to alternate between an expanded occluding configuration while in diastole and a collapsed lesser occluding configuration is systole. There flexible occluding membrane thereby acts as a temporary aortic valve. The flexible occluding membrane is generally conical in shape, with the tip of the cone disposed closer to the aorta than the proximal rim. In diastole, blood flow expands the flexible occluding membrane so that the proximal rim apposes the inner wall of the aorta. The flexible occluding membrane will have one or more openings to allow perfusion of the coronary arteries in diastole.
    Type: Application
    Filed: March 29, 2016
    Publication date: December 1, 2016
    Inventor: PAUL C. HO
  • Patent number: 9480564
    Abstract: A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve including a reversibly expandable occluder surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluder is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The stent(s) displace the native tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the stent(s) at the aortic annulus with precision and relative ease.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: November 1, 2016
    Assignee: HOCOR Cardiovascular Technologies, LLC
    Inventor: Paul C. Ho
  • Publication number: 20160174992
    Abstract: Methods and systems for regulating aortic regurgitation during aortic valve replacement or repair procedures utilize a temporary aortic valve (TAV) catheter and a controller. The temporary aortic valve catheter has an expandable occlusion device which can partially occlude the aortic lumen during ventricular diastole with a lesser occlusion during ventricular systole. Exemplary balloon structures include multiple, independently inflatable balloons which are inflated in synchrony with the cardiac cycle by the controller. By controlling aortic regurgitation, the repair or replacement protocols can be conducted with less interference from blood flow.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 23, 2016
    Inventor: Paul C. Ho
  • Patent number: 9308086
    Abstract: Methods and systems for regulating aortic regurgitation during aortic valve replacement or repair procedures utilize a temporary aortic valve (TAV) catheter and a controller. The temporary aortic valve catheter has an expandable occlusion device which can partially occlude the aortic lumen during ventricular diastole with a lesser occlusion during ventricular systole. Exemplary balloon structures include multiple, independently inflatable balloons which are inflated in synchrony with the cardiac cycle by the controller. By controlling aortic regurgitation, the repair or replacement protocols can be conducted with less interference from blood flow.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 12, 2016
    Assignee: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. Ho
  • Publication number: 20140200658
    Abstract: A catheter adapted for placement in the ascending aorta comprises a central catheter mechanism and a balloon structure or other occluding structure at its distal end. The catheter may be placed over the aortic arch such that the occluding structure is placed in the ascending aorta just above the Sinus of Valsalva and coronary ostia. Once in place, the occluding structure is inflated to control blood flow through the aorta during aortic valve ablation and replacement protocols.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. HO
  • Publication number: 20140142692
    Abstract: A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve including a reversibly expandable occluding means surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The stent(s) displace the native tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the stent(s) at the aortic annulus with precision and relative ease.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 22, 2014
    Applicant: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. HO
  • Patent number: 8663318
    Abstract: A catheter adapted for placement in the ascending aorta comprises a central catheter mechanism and a balloon structure or other occluding structure at its distal end. The catheter may be placed over the aortic arch such that the balloon structure is placed in the ascending aorta just above the Sinus of Valsalva and coronary ostia. Once in place, the balloon structure is inflated to control blood flow through the aorta during aortic valve ablation and replacement protocols.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 4, 2014
    Assignee: HOCOR Cardiovascular Technologies LLC
    Inventor: Paul C. Ho