Patents by Inventor Paul C. Melcher

Paul C. Melcher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7596164
    Abstract: The present invention provides a control system for a modular high repetition rate two discharge chamber ultraviolet gas discharge laser. In preferred embodiments, the laser is a production line machine with a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. Novel control features specially adapted for a two-chamber gas discharge laser system include: (1) pulse energy controls, with nanosecond timing precision (2) precision pulse to pulse wavelength controls with high speed and extreme speed wavelength tuning (3) fast response gas temperature control and (4) F2 injection controls with novel learning algorithm.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: September 29, 2009
    Assignee: Cymer, Inc.
    Inventors: John P. Fallon, John A. Rule, Robert N. Jacques, Jacob P. Lipcon, William N. Partlo, Alexander I. Ershov, Toshihiko Ishihara, John Meisner, Richard M. Ness, Paul C. Melcher
  • Publication number: 20090238225
    Abstract: A method and apparatus for operating a very high repetition gas discharge laser system magnetic switch pulsed power system is disclosed, which may comprise a solid state switch, a charging power supply electrically connected to one side of the solid state switch; a charging inductor electrically connected to the other side of the solid state switch; a deque circuit electrically in parallel with the solid state switch comprising a deque switch; a peaking capacitor electrically connected to the charging inductor, a peaking capacitor charging control system operative to charge the peaking capacitor by opening the deque switch and leaving the solid state switch open and then shutting the solid state switch. The solid state switch may comprise a plurality of solid state switches electrically in parallel.
    Type: Application
    Filed: May 22, 2009
    Publication date: September 24, 2009
    Applicant: CYMER, INC.
    Inventors: Chaofeng Huang, Paul C. Melcher, Richard M. Ness
  • Patent number: 7167499
    Abstract: A gas discharge laser crystallization apparatus and method for performing a transformation of a crystal makeup or orientation in the substrate of a workpiece is disclosed which may comprise, a multichamber laser system comprising, a first laser unit comprising, a first and second gas discharge chamber; each with a pair of elongated spaced apart opposing electrodes contained within the chamber, forming an elongated gas discharge region; a laser gas contained within the chamber comprising a halogen and a noble gas selected to produce laser light at a center wavelength optimized to the crystallization process to be earned out on the workpiece; a power supply module comprising, a DC power source; a first and a second pulse compression and voltage step up circuit connected to the DC power source and connected to the respective electrodes, comprising a multistage fractional step up transformer having a plurality of primary windings connected in series and a single secondary winding passing through each of the plura
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: January 23, 2007
    Assignee: TCZ PTE. Ltd.
    Inventors: Palash P. Das, Bruce E. Bolliger, Partiv S. Patel, Brian C. Klene, Paul C. Melcher, Robert B. Saethre
  • Patent number: 7101203
    Abstract: Apparatus and method for electrically connecting two closely positioned high voltage modules with little or no bend and without any loops in an electrical interconnecting coaxial cable may have a high voltage connector attached to at least a portion of the cable on at least one end of the cable; a push through high voltage connector receptor within one module; and a disconnection mechanism within the one module adapted to move the high voltage connector and at least a portion of cable to which the high voltage connector is attached through the connector receptor from a contact position to a housed position in a direction away from the other module to which high voltage connection is to be made. The connector receptor may have an open cylindrical connector with a contacting surface contained on the interior wall of the cylindrical connector and an interlock mechanism.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: September 5, 2006
    Assignee: Cymer, Inc.
    Inventors: Robert B. Saethre, Paul C. Melcher, George X. Ferguson
  • Patent number: 7079564
    Abstract: The present invention provides a control system for a modular high repetition rate two discharge chamber ultraviolet gas discharge laser. In preferred embodiments, the laser is a production line machine with a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. Novel control features specially adapted for a two-chamber gas discharge laser system include: (1) pulse energy controls, with nanosecond timing precision (2) precision pulse to pulse wavelength controls with high speed and extreme speed wavelength tuning (3) fast response gas temperature control and (4) F2 injection controls with novel learning algorithm.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: July 18, 2006
    Assignee: Cymer, Inc.
    Inventors: John P. Fallon, John A. Rule, Robert N. Jacques, Jacob P. Lipcon, William N. Partlo, Alexander I. Ershov, Toshihiko Ishihara, John Meisner, Richard M. Ness, Paul C. Melcher
  • Patent number: 7039086
    Abstract: The present invention provides a control system for a modular high repetition rate two discharge chamber ultraviolet gas discharge laser. In preferred embodiments, the laser is a production line machine with a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. Novel control features specially adapted for a two-chamber gas discharge laser system include: (1) pulse energy controls, with nanosecond timing precision (2) precision pulse to pulse wavelength controls with high speed and extreme speed wavelength tuning (3) fast response gas temperature control and (4) F2 injection controls with novel learning algorithm.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: May 2, 2006
    Assignee: Cymer, Inc.
    Inventors: John P. Fallon, John A. Rule, Robert N. Jacques, Jacob Lipcon, Richard L. Sandstrom, William N. Partlo, Alexander I. Ershov, Toshihiko Ishihara, John Meisner, Richard M. Ness, Paul C. Melcher
  • Patent number: 7002443
    Abstract: An apparatus and method for providing cooling to a magnetic circuit element having a magnetic core disposed around a centrally located core support member having at least one core support member wall is disclosed which may comprise a core support coolant inlet; a core support coolant outlet; a plurality of interconnected coolant flow passages contained within the core support member wall and interconnected and arranged to pass coolant from one coolant flow passage to the next within the core support member wall along a coolant flow path within at least a substantial portion of the core support member wall from the core support coolant inlet to the core support coolant outlet.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: February 21, 2006
    Assignee: Cymer, Inc.
    Inventors: Richard M. Ness, William N. Partlo, Paul C. Melcher, George X. Ferguson, Robert B. Saethre
  • Patent number: 6914919
    Abstract: The present invention provides gas discharge laser systems capable of reliable long-term operation in a production line capacity at repetition rates in the range of 6,000 to 10,0000 pulses power second. Preferred embodiments are configured as KrF, ArF and F2 lasers used for light sources for integrated circuit lithography. Improvements include a modified high voltage power supply capable for charging an initial capacitor of a magnetic compression pulse power system to precise target voltages 6,000 to 10,0000 times per second and a feedback control for monitoring pulse energy and determining the target voltages on a pulse-by-pulse basis. Several techniques are disclosed for removing discharge created debris from the discharge region between the laser electrodes during the intervals between discharges. In one embodiment the width of the discharge region is reduced from about 3 mm to about 1 mm so that a gas circulation system designed for 4,000 Hz operation could be utilized for 10,000 Hz operation.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: July 5, 2005
    Assignee: Cymer, Inc.
    Inventors: Tom A. Watson, Richard C. Ujazdowski, Alex P. Ivaschenko, Richard L. Sandstrom, Robert A. Shannon, R. Kyle Webb, Frederick A. Palenschat, Thomas Hofmann, Curtis L. Rettig, Richard M. Ness, Paul C. Melcher, Alexander I. Ershov
  • Patent number: 6882674
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: April 19, 2005
    Assignee: Cymer, Inc.
    Inventors: Christian J. Wittak, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov, Thomas D. Steiger, Jerome A. Emilo, Clay C. Titus, Alex P. Ivaschenko, Paolo Zambon, Gamaralalage G. Padmabandu, Mark S. Branham, Sunjay Phatak, Raymond F. Cybulski
  • Publication number: 20040264521
    Abstract: An apparatus and method for providing cooling to a magnetic circuit element having a magnetic core disposed around a centrally located core support member having at least one core support member wall is disclosed which may comprise a core support coolant inlet; a core support coolant outlet; a plurality of interconnected coolant flow passages contained within the core support member wall and interconnected and arranged to pass coolant from one coolant flow passage to the next within the core support member wall along a coolant flow path within at least a substantial portion of the core support member wall from the core support coolant inlet to the core support coolant outlet.
    Type: Application
    Filed: June 25, 2003
    Publication date: December 30, 2004
    Inventors: Richard M. Ness, William N. Partlo, Paul C. Melcher, George X. Ferguson, Robert B. Saethre
  • Publication number: 20040266235
    Abstract: An apparatus and method for electrically connecting two closely positioned high voltage modules with little or no bend and without any loops in an electrical interconnecting coaxial cable, is disclosed, which may comprise a high voltage connector attached to at least a portion of the cable on at least one end of the cable; a push through high voltage connector receptor within one module; and a disconnection mechanism within the one module adapted to move the high voltage connector and the at least a portion of cable to which the high voltage connector is attached through the connector receptor from a contact position to a housed position in a direction away from the other module to which high voltage connection is to be made. The high voltage connector receptor may comprise an open cylindrical connector with a contacting surface contained on the interior wall of the cylindrical connector.
    Type: Application
    Filed: June 25, 2003
    Publication date: December 30, 2004
    Inventors: Robert B. Saethre, Paul C. Melcher, George X. Ferguson
  • Publication number: 20040182838
    Abstract: A gas discharge laser crystallization apparatus and method for performing a transformation of a crystal makeup or orientation in the substrate of a workpiece is disclosed which may comprise, a multichamber laser system comprising, a first laser unit comprising, a first and second gas discharge chamber; each with a pair of elongated spaced apart opposing electrodes contained within the chamber, forming an elongated gas discharge region; a laser gas contained within the chamber comprising a halogen and a noble gas selected to produce laser light at a center wavelength optimized to the crystallization process to be carried out on the workpiece; a power supply module comprising, a DC power source; a first and a second pulse compression and voltage step up circuit connected to the DC power source and connected to the respective electrodes, comprising a multistage fractional step up transformer having a plurality of primary windings connected in series and a single secondary winding passing through each of the plur
    Type: Application
    Filed: February 18, 2004
    Publication date: September 23, 2004
    Inventors: Palash P. Das, Bruce E. Bolliger, Parthiv S. Patel, Brian C. Klene, Paul C. Melcher, Robert B. Saethre
  • Patent number: 6757316
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: June 29, 2004
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Publication number: 20040057489
    Abstract: The present invention provides a control system for a modular high repetition rate two discharge chamber ultraviolet gas discharge laser. In preferred embodiments, the laser is a production line machine with a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber.
    Type: Application
    Filed: July 30, 2003
    Publication date: March 25, 2004
    Inventors: John P. Fallon, John A. Rule, Robert N. Jacques, Jacob Lipcon, Richard L. Sandstrom, William N. Partlo, Alexander I. Ershov, Toshihiko Ishihara, John Meisner, Richard M. Ness, Paul C. Melcher
  • Patent number: 6690704
    Abstract: The present invention provides a control system for a modular high repetition rate two discharge chamber ultraviolet gas discharge laser. In preferred embodiments, the laser is a production line machine with a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. Feedback timing control techniques are provided for controlling the relative timing of the discharges in the two chambers with an accuracy in the range of about 2 to 5 billionths of a second even in burst mode operation. This MOPA system is capable of output pulse energies approximately double the comparable single chamber laser system with greatly improved beam quality.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: February 10, 2004
    Assignee: Cymer, Inc.
    Inventors: John P. Fallon, Richard L. Sandstrom, William N. Partlo, Alexander I. Ershov, Toshihiko Ishihara, John Meisner, Richard M. Ness, Paul C. Melcher, John A. Rule, Robert N. Jacques
  • Publication number: 20030118072
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Christian J. Wittak, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov, Thomas D. Steiger, Jerome A. Emilo, Clay C. Titus, Alex P. Ivaschenko, Paolo Zambon, Gamaralalage G. Padmabandu, Mark S. Branham, Sunjay Phatak, Raymond F. Cybulski
  • Publication number: 20030031216
    Abstract: The present invention provides a control system for a modular high repetition rate two discharge chamber ultraviolet gas discharge laser. In preferred embodiments, the laser is a production line machine with a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. Feedback timing control techniques are provided for controlling the relative timing of the discharges in the two chambers with an accuracy in the range of about 2 to 5 billionths of a second even in burst mode operation. This MOPA system is capable of output pulse energies approximately double the comparable single chamber laser system with greatly improved beam quality.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 13, 2003
    Inventors: John P. Fallon, Richard L. Sandstrom, William N. Partlo, Alexander I. Ershov, Toshihiko Ishihara, John Meisner, Richard M. Ness, Paul C. Melcher, John A. Rule, Robert N. Jacques
  • Publication number: 20030012234
    Abstract: The present invention provides gas discharge laser systems capable of reliable long-term operation in a production line capacity at repetition rates in the range of 6,000 to 10,0000 pulses power second. Preferred embodiments are configured as KrF, ArF and F2 lasers used for light sources for integrated circuit lithography. Improvements include a modified high voltage power supply capable for charging an initial capacitor of a magnetic compression pulse power system to precise target voltages 6,000 to 10,0000 times per second and a feedback control for monitoring pulse energy and determining the target voltages on a pulse-by-pulse basis. Several techniques are disclosed for removing discharge created debris from the discharge region between the laser electrodes during the intervals between discharges. In one embodiment the width of the discharge region is reduced from about 3 mm to about 1 mm so that a gas circulation system designed for 4,000 Hz operation could be utilized for 10,000 Hz operation.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 16, 2003
    Inventors: Tom A. Watson, Richard C. Ujazdowski, Alex P. Ivaschenko, Richard L. Sandstrom, Robert A. Shannon, R. Kyle Webb, Frederick A. Palenschat, Thomas Hofmann, Curtis L. Rettig, Richard M. Ness, Paul C. Melcher, Alexander I. Ershov
  • Publication number: 20020021728
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: May 11, 2001
    Publication date: February 21, 2002
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Patent number: RE42588
    Abstract: The present invention provides a control system for a modular high repetition rate two discharge chamber ultraviolet gas discharge laser. In preferred embodiments, the laser is a production line machine with a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. Feedback timing control techniques are provided for controlling the relative timing of the discharges in the two chambers with an accuracy in the range of about 2 to 5 billionths of a second even in burst mode operation. This MOPA system is capable of output pulse energies approximately double the comparable single chamber laser system with greatly improved beam quality.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: August 2, 2011
    Assignee: Cymer, Inc.
    Inventors: John P. Fallon, Richard L. Sandstrom, William N. Partlo, Alexander I. Ershov, Toshihiko Ishihara, John Meisner, Richard M. Ness, Paul C. Melcher, John A. Rule, Robert N. Jacques