Patents by Inventor Paul Casey Kikuchi

Paul Casey Kikuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7280028
    Abstract: A method for manufacturing a planar sensor, comprises disposing a film of a material on a substrate, wherein the material is selected from the group consisting of platinum, rhodium, palladium and mixtures and alloys comprising at least one of the foregoing materials; annealing the material; measuring a resistance value of the material; laser trimming the annealed material; heat treating the laser trimmed material; and laser trimming the heat treated material to form the sensor.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: October 9, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Charles Scott Nelson, Paul Casey Kikuchi, James Paul Vargo, Douglas James Behrendt, Walter T. Symons, William J. LaBarge, Kaius K. Polikarpus, Rick D. Kerr, Jinping Zhang, Paul R. Daniel, Jr.
  • Publication number: 20040202227
    Abstract: A method for manufacturing a planar sensor, comprises disposing a film of a material on a substrate, wherein the material is selected from the group consisting of platinum, rhodium, palladium and mixtures and alloys comprising at least one of the foregoing materials; annealing the material; measuring a resistance value of the material; laser trimming the annealed material; heat treating the laser trimmed material; and laser trimming the heat treated material to form the sensor.
    Type: Application
    Filed: March 17, 2004
    Publication date: October 14, 2004
    Inventors: Charles Scott Nelson, Paul Casey Kikuchi, James Paul Vargo, Douglas James Behrendt, Walter T. Symons, William J. LaBarge, Kaius K. Polikarpus, Rick D. Kerr, Jinping Zhang, Paul R. Daniel
  • Patent number: 6746584
    Abstract: A wide range oxygen sensor comprising a first oxygen pump cell, the first pump cell comprising: a first and a second electrode, with a first communication zone therebetween, the first electrode being exposed to exhaust gas, the second electrode being exposed to a heat source; and wherein at least one element of said first pump cell incorporates a gas-diffusion limiting characteristic; a second oxygen pump cell, operating at opposite polarity from said first oxygen pump cell, electrically isolated from said first oxygen pump cell, and disposed within a sensor substrate, the second cell comprising: a third and a fourth electrode, with a second communication zone therebetween, the third electrode being exposed to exhaust gas, the fourth electrode being exposed to a heat source; and wherein at least one element of said second pump cell incorporates a gas-diffusion limiting characteristic; at least one heating element for providing heat to said second electrode and said fourth electrode; and an electrical circuit
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: June 8, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Da Yu Wang, Paul Casey Kikuchi, Lone-Wen F. Tai, David Sturge Eddy, Raymond Leo Bloink, Eric J. Detwiler, Larry Max Oberdier
  • Publication number: 20040060550
    Abstract: A stored relationship between air/fuel ratio and the output voltage of a wide-range exhaust gas oxygen sensor is automatically re-calibrated under any air/fuel ratio condition. Once an engine control module records oxygen sensor voltages under stoichiometric and deceleration fuel cut-off conditions, the air/fuel ratio that corresponding to any sensor voltage can be calculated. In operation, the sensor voltage recorded during fuel cut-off is used to determine first and second lump-sum parameters that relate sensor output voltage to air/fuel ratio under lean and rich operating conditions, respectively. The determined parameters are compared with previously determined values, and when the comparison indicates that at least a predetermined change the sensor operating characteristics has occurred, the parameters are used to re-calibrate the stored sensor voltage vs. air/fuel ratio relationship.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Ming-Cheng Wu, Andrew P. Bagnasco, Paul Casey Kikuchi
  • Publication number: 20030101573
    Abstract: A method for manufacturing a planar temperature sensor including disposing a thick amount of a material having a temperature coefficient of resistance of greater than about 800 parts per million and a natural resistance of above about 5 micro-ohm-centimeters on a substrate, measuring a resistance value of said material, and setting a laser trimming device to ablate material consistent with achieving an inputted resistance value.
    Type: Application
    Filed: December 4, 2001
    Publication date: June 5, 2003
    Inventors: Charles Scott Nelson, Paul Casey Kikuchi, James Paul Vargo, Douglas James Behrendt
  • Patent number: 6562747
    Abstract: The electrolyte comprises up to about 80 wt % zirconia, up to about 30 wt % stabilizer, and up to about 40 wt % dopant-zirconia. Alternatively, the electrolyte can comprise zirconia having a phase chemistry, wherein the phase chemistry, at about 25° C., is about 15 wt % to about 35 wt % monoclinic, less than about 10 wt % tetragonal, balance cubic, based upon the weight of the zirconia in the electrolyte.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: May 13, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Walter Thomas Symons, Kaius Kiiren Polikarpus, Kerry J. Gross, Da Yu Wang, Paul Casey Kikuchi
  • Patent number: 6514397
    Abstract: An exhaust gas sensor includes a first electrode, a second electrode, and an electrolyte disposed between the first electrode and the second electrode. The electrolyte includes a first portion disposed at least in partial physical contact and in ionic communication with a second portion. The first portion has a first portion grain size which is different than a second portion grain size. Further, a method for manufacturing a gas sensor includes forming a multiple portion electrolyte. The electrolyte is formed with a first portion having one grain size, and a second portion at least in partial physical contact and in ionic contact with the first portion, the second portion having a second portion grain size different from the first portion grain size. The electrolyte may be fired before or after application of an electrode in ionic contact with the first portion and a second electrode in ionic contact with said second portion.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: February 4, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: William J. LaBarge, Darrell H. Eldridge, Paul Casey Kikuchi, Richard Eugene Fouts, Richard Frederick Beckmeyer
  • Publication number: 20020108872
    Abstract: The electrolyte comprises up to about 80 wt % zirconia, up to about 30 wt % stabilizer, and up to about 40 wt % dopant-zirconia. Alternatively, the electrolyte can comprise zirconia having a phase chemistry, wherein the phase chemistry, at about 25° C.
    Type: Application
    Filed: December 19, 2000
    Publication date: August 15, 2002
    Inventors: Walter Thomas Symons, Kaius Kiiren Polikarpus, Kerry J. Gross, Da Yu Wang, Paul Casey Kikuchi
  • Publication number: 20020108854
    Abstract: An exhaust gas sensor includes a first electrode, a second electrode, and an electrolyte disposed between the first electrode and the second electrode. The electrolyte includes a first portion disposed at least in partial physical contact and in ionic communication with a second portion. The first portion has a first portion grain size which is different than a second portion grain size. Further, a method for manufacturing a gas sensor includes forming a multiple portion electrolyte. The electrolyte is formed with a first portion having one grain size, and a second portion at least in partial physical contact and in ionic contact with the first portion, the second portion having a second portion grain size different from the first portion grain size. The electrolyte may be fired before or after application of an electrode in ionic contact with the first portion and a second electrode in ionic contact with said second portion.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 15, 2002
    Inventors: William J. Labarge, Darrell H. Eldridge, Paul Casey Kikuchi, Richard Eugene Fouts, Richard Frederick Beckmeyer