Patents by Inventor Paul Christianson

Paul Christianson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11442164
    Abstract: A method for determining convective cell growth from weather radar reflectivity data includes receiving first weather reflectivity values and receiving second weather reflectivity values at a point in time subsequent to receiving the first weather reflectivity values, storing the first and second weather reflectivity values in cells of a three-dimensional buffer, for each of the first and second weather reflectivity values, calculating a vertically-integrated reflectivity (VIR) value for a column of cells in the three-dimensional buffer, the column of cells being associated with a latitude/longitude position, and comparing the VIR value for the second weather reflectivity values against the VIR for the first weather reflectivity values to determine a difference in the VIR values. Furthermore, the method includes displaying a cell growth hazard indication at a weather display in an area of the weather display that corresponds to the latitude/longitude position.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: September 13, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael Dillard, Santosh Mathan, Paul Christianson
  • Publication number: 20200386884
    Abstract: A method for determining convective cell growth from weather radar reflectivity data includes receiving first weather reflectivity values and receiving second weather reflectivity values at a point in time subsequent to receiving the first weather reflectivity values, storing the first and second weather reflectivity values in cells of a three-dimensional buffer, for each of the first and second weather reflectivity values, calculating a vertically-integrated reflectivity (VIR) value for a column of cells in the three-dimensional buffer, the column of cells being associated with a latitude/longitude position, and comparing the VIR value for the second weather reflectivity values against the VIR for the first weather reflectivity values to determine a difference in the VIR values. Furthermore, the method includes displaying a cell growth hazard indication at a weather display in an area of the weather display that corresponds to the latitude/longitude position.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 10, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael Dillard, Santosh Mathan, Paul Christianson
  • Patent number: 9268019
    Abstract: A convective weather graphic element generator system generates graphic elements associated with severe convective weather for presentation on a display on an aircraft. An exemplary system employs a weather radar and a processing system. The processing system determines a value associated with the detected convective weather based on the received weather radar returns detected by the weather radar, compares the value associated with the detected convective weather with a threshold, and generates a graphic element for a region of airspace when the value associated with the detected convective weather exceeds the threshold. The display is configured to concurrently present the weather reflectivity information generated by the weather radar and the graphic element associated with the convective weather, wherein portions of both the presented graphic element and the presented weather reflectivity information of the corresponding area are concurrently visible on the display.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 23, 2016
    Assignee: Honeywell International Inc.
    Inventors: Brian Paul Bunch, Paul Christianson, Robert J. Jensen
  • Patent number: 9188700
    Abstract: Systems and methods of detecting type I ice crystals using an aircraft's onboard weather radar system are disclosed. An exemplary embodiment identifies radar returns having a return level signal strength less than a radar return sensitivity threshold level, determines if at least one of a weather condition and a flight condition concurrently exists with the identified radar returns having the return level signal strength less than the radar return sensitivity threshold level, and identifies a region of airspace potentially having type I ice crystals when the at least one of the weather condition and the flight condition concurrently exists with the identified radar returns having the return level signal strength less than the radar return sensitivity threshold level.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: November 17, 2015
    Assignee: Honeywell International Inc.
    Inventors: Brian P. Bunch, Paul Christianson
  • Publication number: 20140361923
    Abstract: A convective weather graphic element generator system generates graphic elements associated with severe convective weather for presentation on a display on an aircraft. An exemplary system employs a weather radar and a processing system. The processing system determines a value associated with the detected convective weather based on the received weather radar returns detected by the weather radar, compares the value associated with the detected convective weather with a threshold, and generates a graphic element for a region of airspace when the value associated with the detected convective weather exceeds the threshold. The display is configured to concurrently present the weather reflectivity information generated by the weather radar and the graphic element associated with the convective weather, wherein portions of both the presented graphic element and the presented weather reflectivity information of the corresponding area are concurrently visible on the display.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Applicant: Honeywell International Inc.
    Inventors: Brian Paul Bunch, Paul Christianson, Robert J. Jensen
  • Publication number: 20130234884
    Abstract: Systems and methods of detecting type I ice crystals using an aircraft's onboard weather radar system are disclosed. An exemplary embodiment identifies radar returns having a return level signal strength less than a radar return sensitivity threshold level, determines if at least one of a weather condition and a flight condition concurrently exists with the identified radar returns having the return level signal strength less than the radar return sensitivity threshold level, and identifies a region of airspace potentially having type I ice crystals when the at least one of the weather condition and the flight condition concurrently exists with the identified radar returns having the return level signal strength less than the radar return sensitivity threshold level.
    Type: Application
    Filed: June 27, 2012
    Publication date: September 12, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Brian P. Bunch, Paul Christianson
  • Patent number: 8319679
    Abstract: Systems and methods for predicting when a weather anomaly (e.g., convective cell) will intersect with an aircraft. Direction of movement and velocity information for at least one weather anomaly are received at a processor from a radar system. An intercept point for the at least one weather anomaly is determined based on the received location, direction of movement and velocity information and location and current speed information for the aircraft. Then, a first indicator based on the intercept point is displayed on a display device.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: November 27, 2012
    Assignee: Honeywell International Inc.
    Inventor: Paul Christianson
  • Patent number: 8289202
    Abstract: A method, system, and computer program product for storing weather radar return data into a three-dimensional buffer. The system located on an aircraft includes a radar system that transmits a radar signal and generates a radar measurement as a result of radar return of the transmitted radar signal. A three-dimensional buffer includes a plurality of storage locations. A processor generates or updates a reflectivity value in storage locations in the three-dimensional buffer based on the generated radar measurement, a previously stored reflectivity value for the storage location, and uncertainty parameters. The uncertainty parameters of normalized radar cross section for ground elements are initialized based on a type of ground associated with each of the elements. The uncertainty parameters for weather reflectivity are initialized based on a priori information. The generated reflectivity values are stored in the three-dimensional buffer according to the storage locations.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: October 16, 2012
    Assignee: Honeywell International Inc.
    Inventor: Paul Christianson
  • Publication number: 20120249365
    Abstract: A method, system, and computer program product for storing weather radar return data into a three-dimensional buffer. The system located on an aircraft includes a radar system that transmits a radar signal and generates a radar measurement as a result of radar return of the transmitted radar signal. A three-dimensional buffer includes a plurality of storage locations. A processor generates or updates a reflectivity value in storage locations in the three-dimensional buffer based on the generated radar measurement, a previously stored reflectivity value for the storage location, and uncertainty parameters. The uncertainty parameters of normalized radar cross section for ground elements are initialized based on a type of ground associated with each of the elements. The uncertainty parameters for weather reflectivity are initialized based on a priori information. The generated reflectivity values are stored in the three-dimensional buffer according to the storage locations.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 4, 2012
    Applicant: Honeywell International Inc.
    Inventor: Paul Christianson
  • Patent number: 8228227
    Abstract: Systems and methods for improving relevant weather determination for aircraft at altitude. An exemplary system includes a weather radar component and memory that stores weather radar data in a three-dimensional (3D) buffer. A processor calculates vertically integrated reflectivity using the stored weather radar data at a predefined reference altitude at one or more locations from the aircraft. The processor then adjusts a lower boundary of a relevant weather envelope from a first value to a second value, if the vertically integrated reflectivity is greater than a predefined threshold. The range of the adjusted lower boundary of the envelope is associated with the weather radar data having the calculated vertically integrated reflectivity greater than the predefined threshold. A display device displays the weather radar data located within the envelope in a first manner and displays the weather radar data located outside of the envelope in a second manner.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: July 24, 2012
    Assignee: Honeywell International Inc.
    Inventors: Brian P. Bunch, Paul Christianson
  • Publication number: 20120154209
    Abstract: Systems and methods for predicting when a weather anomaly (e.g., convective cell) will intersect with an aircraft. Direction of movement and velocity information for at least one weather anomaly are received at a processor from a radar system. An intercept point for the at least one weather anomaly is determined based on the received location, direction of movement and velocity information and location and current speed information for the aircraft. Then, a first indicator based on the intercept point is displayed on a display device.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul Christianson
  • Publication number: 20120139778
    Abstract: Systems and methods for improving relevant weather determination for aircraft at altitude. An exemplary system includes a weather radar component and memory that stores weather radar data in a three-dimensional (3D) buffer. A processor calculates vertically integrated reflectivity using the stored weather radar data at a predefined reference altitude at one or more locations from the aircraft. The processor then adjusts a lower boundary of a relevant weather envelope from a first value to a second value, if the vertically integrated reflectivity is greater than a predefined threshold. The range of the adjusted lower boundary of the envelope is associated with the weather radar data having the calculated vertically integrated reflectivity greater than the predefined threshold. A display device displays the weather radar data located within the envelope in a first manner and displays the weather radar data located outside of the envelope in a second manner.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Brian P. Bunch, Paul Christianson
  • Patent number: 8193974
    Abstract: Signal compensation systems and methods compensate an estimated range profile from a plurality of detected signal returns from a true range profile, wherein the signal returns correspond to an emitted stepped frequency pulse-train. An exemplary embodiment utilizes knowledge of the radar system design to identify locations, predict power levels, and suppress the contributions of stepped-frequency range sidelobes (ambiguous peaks) in the estimated range profile, resulting in a cleaner and more accurate radar display.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: June 5, 2012
    Assignee: Honeywell International Inc.
    Inventors: Gloria Logan, Brennan Kilty, Paul Christianson
  • Publication number: 20120112952
    Abstract: Signal compensation systems and methods compensate an estimated range profile from a plurality of detected signal returns from a true range profile, wherein the signal returns correspond to an emitted stepped frequency pulse-train. An exemplary embodiment utilizes knowledge of the radar system design to identify locations, predict power levels, and suppress the contributions of stepped-frequency range sidelobes (ambiguous peaks) in the estimated range profile, resulting in a cleaner and more accurate radar display.
    Type: Application
    Filed: March 4, 2009
    Publication date: May 10, 2012
    Applicant: Honeywell International Inc.
    Inventors: Gloria Logan, Brennan Kilty, Paul Christianson
  • Patent number: 8111186
    Abstract: A weather radar system for improving output of potential lightning and hail weather conditions. An exemplary system includes a processor that receives and stores the weather radar reflectivity values into a three-dimensional buffer, receives an outside air temperature value, and determines freezing level based on the received outside air temperature value. The processor generates lightning icon(s) when a reflectivity value stored at cell(s) of the three-dimensional buffer above determined freezing level is greater than a first threshold amount. Also, the processor adds 1.6 km to the determined freezing level and generates hail icon(s) when a reflectivity value stored at cell(s) at the determined freezing level plus 1.6 km are greater than a second threshold amount. The display device displays the hail and lightning icons when an altitude value that corresponds to the cells associated with the generated lightning icons has been selected for display.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 7, 2012
    Assignee: Honeywell International Inc.
    Inventors: Brian Paul Bunch, Paul Christianson
  • Patent number: 8068050
    Abstract: Systems and methods for improving output of weather information. A weather radar system receives weather reflectivity values. A processing device stores the received weather reflectivity values into a three-dimensional buffer, calculates a sum of the reflectivity value stored in a column of cells within the three-dimensional buffer, and assigns a first hazard indication to the cells of the column when the result of the calculation is above a first threshold. A display device generates a weather display based on data stored in the three-dimensional buffer. The weather display includes a display icon associated with the hazard indication when a cell from the three-dimensional buffer has been selected for the weather display.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 29, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul Christianson
  • Patent number: 8063817
    Abstract: Methods and apparatus for enhancing the resolution of a radar image in the cross-range direction. An example method includes receiving a plurality of received power samples in the cross-range dimension as the radar antenna scans and calculating a window function from the antenna beam response pattern. Then for each of a plurality of positions of the window function along the azimuth axis, multiplying the received response pattern by the window function at that position, yielding a product function for each position. Finally, the method includes calculating an estimated azimuth bin offset, resulting estimated target location, and a reflected power value corresponding to the integral of the product function from the product function of each position. A reconstructed azimuth bin array developed from the estimated target locations and reflected power values is substituted for the original received cross-range received power values, yielding a resolution-enhanced map image.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 22, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul Christianson
  • Patent number: 8059024
    Abstract: Systems and methods for conveying turbulence hazards to a flight crew. An exemplary weather radar system includes a three-dimensional buffer, a processor, and a display. The processor receives weather radar reflectivity values, stores the received weather radar reflectivity values into a three-dimensional buffer, generates and stores turbulence values into cells of the three-dimensional buffer based on the stored respective reflectivity values, and generates first display icons for cells that are located within a predefined threshold distance from a cell in the three-dimensional buffer that has been determined to include a turbulence value that is greater than a first threshold value. The display presents the first display icons when associated cells are selected for display from the three-dimensional buffer.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 15, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul Christianson
  • Patent number: 8022859
    Abstract: Systems and methods distinguish weather radar returns from terrain radar returns. An exemplary embodiment receives a radar return from a weather radar system on board an installation vehicle, receives ground-based weather radar information, compares a location of the radar return received from the onboard weather radar system with a corresponding location in the received ground-based, and determines that the radar return received from the onboard weather radar system is a weather radar return when a location in the received ground-based weather radar information indicates a presence of weather at the location of the radar return.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: September 20, 2011
    Assignee: Honeywell International Inc.
    Inventors: Brian P. Bunch, Michael M. Grove, Paul Christianson
  • Publication number: 20110148693
    Abstract: Systems and methods for conveying turbulence hazards to a flight crew. An exemplary weather radar system includes a three-dimensional buffer, a processor, and a display. The processor receives weather radar reflectivity values, stores the received weather radar reflectivity values into a three-dimensional buffer, generates and stores turbulence values into cells of the three-dimensional buffer based on the stored respective reflectivity values, and generates first display icons for cells that are located within a predefined threshold distance from a cell in the three-dimensional buffer that has been determined to include a turbulence value that is greater than a first threshold value. The display presents the first display icons when associated cells are selected for display from the three-dimensional buffer.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul Christianson