Patents by Inventor Paul Colbourne
Paul Colbourne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12146986Abstract: An optical device may include a laser component to emit a source beam and an optical component to split the source beam to generate a first beam and a second beam. The optical device may include a multiplexing component to multiplex the first beam and the second beam to form a first multiplexed beam, an optical system to receive the first multiplexed beam and demultiplex the first beam and the second beam, and a scanning component to scan a field of view with the first beam and the second beam and receive the first beam and the second beam reflected from the field of view. The optical system may multiplex the first beam and the second beam reflected from the field of view to form a second multiplexed beam, and a demultiplexing component may demultiplex the first beam and the second beam reflected from the field of view.Type: GrantFiled: November 15, 2019Date of Patent: November 19, 2024Assignee: Lumentum Operations LLCInventors: Jiamin Zheng, Barrie P. Keyworth, Josh P. Kemp, Michael C. Larson, Paul Colbourne
-
Patent number: 11909437Abstract: An optical device may include a dispersion element. The optical device may include a reflective optic to reflect an optical beam with a fixed offset perpendicular to a dispersion direction of the dispersion element and with a negative offset in the dispersion direction of the dispersion element. The reflective optic may be aligned to the dispersion element to offset an optical beam with respect to the dispersion element and to cause the optical beam to pass through the dispersion element on a plurality of passes, offsetting the optical beam on each of the plurality of passes.Type: GrantFiled: March 30, 2021Date of Patent: February 20, 2024Assignee: Lumentum Operations LLCInventor: Paul Colbourne
-
Patent number: 11619770Abstract: A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.Type: GrantFiled: October 7, 2019Date of Patent: April 4, 2023Assignee: Lumentum Operations LLCInventors: John Michael Miller, Joel Milgram, Karen Denise Hendrix, Michael O'Leary, Hery Djie, Lu Tian, Paul Colbourne
-
Patent number: 11079551Abstract: An optical device may include a monolithic beam steering engine. The device may include a twin M×N wavelength selective switch (WSS) including a first M×N WSS and a second M×N WSS. The first M×N WSS may include a first panel section of the monolithic beam steering engine to perform first beam steering of first beams, wherein the first beam steering is add/drop port beam steering; and a second panel section of the monolithic beam steering engine to perform second beam steering of second beams, wherein the second beam steering is common port beam steering. The first M×N WSS may include a first optical element aligned to the monolithic beam steering engine to direct one of the first beams or the second beams relative to the other of the first beams or the second beams, such that the first beams are directed in a different direction from the second beams.Type: GrantFiled: December 17, 2019Date of Patent: August 3, 2021Assignee: Lumentum Operations LLCInventors: Peter David Roorda, Paul Colbourne, Sheldon McLaughlin
-
Patent number: 10923875Abstract: An optical device may include a package having a first port for receiving signal light, a source for providing pump light, a combiner for combining the signal light and the pump light into combined light, a second port for sending the combined light, a third port for receiving amplified light, and a free-space optical system for filtering amplified signal light from the amplified light, and a fourth port for sending the amplified signal light. The free-space optical system may include beam shaping optics that enlarge a beam size of the amplified light prior to the filtering.Type: GrantFiled: February 6, 2018Date of Patent: February 16, 2021Assignee: Lumentum Operations LLCInventors: Jiamin Zheng, Barrie P. Keyworth, Paul Colbourne, Dhanorm Plumwongrot, Gareth Jones, Sheldon McLaughlin
-
Publication number: 20200033509Abstract: A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.Type: ApplicationFiled: October 7, 2019Publication date: January 30, 2020Inventors: John Michael Miller, Joel Milgram, Karen Denise Hendrix, Michael O'Leary, Hery Djie, Lu Tian, Paul Colbourne
-
Patent number: 10476624Abstract: A first configuration of an optical node may include a set of degrees, each including an inbound wavelength selective switch (WSS) and an outbound WSS. The first configuration may include a first degree expansion including a first inbound expansion WSS and a first outbound expansion WSS. An expansion input of the first inbound expansion WSS may connect to an expansion output of a second outbound expansion WSS included in a second degree expansion of a second configuration of the optical node. An expansion output of the first outbound expansion WSS may connect to an expansion input of a second inbound expansion WSS included in the second degree expansion of the second configuration. A signal input to an inbound WSS of a given one of the set of degrees may be routed, via the first degree expansion and the second degree expansion, to any drop port included in the second configuration.Type: GrantFiled: April 5, 2019Date of Patent: November 12, 2019Assignee: Lumentum Operations LLCInventors: Paul Colbourne, Brian Smith
-
Patent number: 10461493Abstract: A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.Type: GrantFiled: August 10, 2018Date of Patent: October 29, 2019Assignee: Lumentum Operations LLCInventors: Wei Xiong, Michael C. Larson, Paul Colbourne, Sheldon McLaughlin
-
Patent number: 10436947Abstract: A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.Type: GrantFiled: May 7, 2018Date of Patent: October 8, 2019Assignee: Lumentum Operations LLCInventors: John Michael Miller, Joel Milgram, Karen Denise Hendrix, Michael O'Leary, Hery Djie, Lu Tian, Paul Colbourne
-
Publication number: 20190006816Abstract: A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.Type: ApplicationFiled: August 10, 2018Publication date: January 3, 2019Inventors: Wei Xiong, Michael C. Larson, Paul Colbourne, Sheldon McLaughlin
-
Patent number: 10135559Abstract: A wavelength selective switch (WSS) may include a first set of ports, each to launch a respective beam of a first set of beams, wherein the first set of beams is provided to a first position on a focal plane, and wherein a first set of wavelength channel sub-beams, included in a beam of the first set of beams, is to be incident on a particular section of a switching array. The WSS may include a second set of ports, each to launch a respective beam of a second set of beams, wherein the second set of beams is provided to a second position on the focal plane, wherein the second position is different from the first position, and wherein a second set of wavelength channel sub-beams, included in a beam of the second set of beams, is to be incident on the particular section of the switching array.Type: GrantFiled: August 24, 2017Date of Patent: November 20, 2018Assignee: Lumentum Operations LLCInventors: Paul Colbourne, Sheldon McLaughlin
-
Publication number: 20180252845Abstract: A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.Type: ApplicationFiled: May 7, 2018Publication date: September 6, 2018Inventors: John Michael Miller, Joel Milgram, Karen Denise Hendrix, Michael O'Leary, Hery Djie, Lu Tian, Paul Colbourne
-
Patent number: 10050405Abstract: A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.Type: GrantFiled: April 19, 2016Date of Patent: August 14, 2018Assignee: Lumentum Operations LLCInventors: Wei Xiong, Michael C. Larson, Paul Colbourne, Sheldon McLaughlin
-
Patent number: 10028040Abstract: An optical node may include D (D?2) input ports, D output ports, and D degrees. Each degree may include an inbound M×N (M?D, N?2D) WSS and an outbound M×N WSS. Each inbound M×N WSS may include an input connected to one of the D input ports; inputs connected to outputs of inbound M×N WSSs of the other degrees; outputs connected to inputs of outbound M×N WSSs of the other degrees; outputs connected to inputs of inbound M×N WSSs of the other degrees; and a local drop port. Each outbound M×N WSS may include an output connected to one of the D input ports; outputs connected to inputs of outbound M×N WSSs of the other degrees; inputs connected to outputs of inbound M×N WSSs of the other degrees; inputs connected to outputs of outbound M×N WSSs of the other degrees; and a local add port.Type: GrantFiled: April 21, 2017Date of Patent: July 17, 2018Assignee: Lumentum Operations LLCInventor: Paul Colbourne
-
Patent number: 9998253Abstract: A wavelength selective switch (WSS) may include a front-end unit that includes an input few-mode fiber (FMF) providing an input optical signal including multiple wavelengths. The multiple wavelengths may each have N modes. The front-end unit may include two or more output few-mode fibers (FMFs), and a side that has a 1×N port for each of the input FMF and the two or more output FMFs. Each of the 1×N ports may be single mode in a wavelength dispersion dimension and N-mode in a switching dimension. The WSS may include a switching element to receive the input optical signal from the front-end unit, switch each of the multiple wavelengths of the input optical signal to form one or more output optical signals, and direct each of the one or more output optical signals to a corresponding 1×N port of the front-end unit.Type: GrantFiled: September 14, 2016Date of Patent: June 12, 2018Assignee: Lumentum Operations LLCInventor: Paul Colbourne
-
Patent number: 9964707Abstract: An optical cross-connect including two deflector arrays optically separated by an angle-to-offset (ATO) element, wherein each deflector array includes a plurality of deflectors aligned in an array direction, each deflector array having a switching direction substantially perpendicular to the corresponding array direction, the array direction of the two deflector arrays being substantially perpendicular. Beam shaping optics convert light transmitted towards the first deflector array to have an elliptical cross-section at the first deflector array, thus providing a relatively simple and compact optical cross-connect.Type: GrantFiled: November 7, 2016Date of Patent: May 8, 2018Assignee: Lumentum Operations LLCInventor: Paul Colbourne
-
Patent number: 9964668Abstract: A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.Type: GrantFiled: April 24, 2017Date of Patent: May 8, 2018Assignee: Lumentum Operations LLCInventors: John Michael Miller, Joel Milgram, Karen Denise Hendrix, Michael O'Leary, Hery Djie, Lu Tian, Paul Colbourne
-
Patent number: 9913008Abstract: A wavelength selective switch (WSS) may include a first port array including input ports, each to launch a respective beam of light, and a dispersive element to separate, in a lateral direction, a beam of light, launched by one of the input ports, into dispersed wavelength channel sub-beams. The WSS may include a switching array to direct the dispersed wavelength channel sub-beams, at respective angles in a vertical direction. The dispersive element may converge groups of dispersed wavelength channel sub-beams in the lateral direction to form wavelength channel sub-beams. The WSS may include a splitting element to split, in the lateral direction, a wavelength channel sub-beam, of the wavelength channel sub-beams, into split wavelength channel sub-beams. The WSS may include switching elements to direct the split wavelength channel sub-beams at respective angles in the vertical direction, and output ports associated with the switching elements.Type: GrantFiled: June 6, 2017Date of Patent: March 6, 2018Assignee: Lumentum Operations LLCInventors: Barrie P. Keyworth, Paul Colbourne
-
Patent number: 9883263Abstract: A free-space MCS may include an input port to launch a beam of light, N output ports, a beam splitter to split the beam of light into N portions, and a deflector array including N deflectors aligned in an array direction. Each deflector may have an active region with a size in the array direction that matches a size in the array direction of a portion, of the N portions, incident thereon. The free-space MCS may include first beam shaping optics to form a first elliptical beam spot at the beam splitter with a major axis substantially perpendicular to the switching direction, and an angle-to-offset element to direct each of the N portions from the beam splitter to a different deflector of the N deflectors. Each of the N portions may have, at the deflector, a second elliptical beam spot with a major axis substantially parallel to the switching direction.Type: GrantFiled: December 19, 2016Date of Patent: January 30, 2018Assignee: Lumentum Operations LLCInventor: Paul Colbourne
-
Patent number: 9632225Abstract: A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.Type: GrantFiled: July 14, 2015Date of Patent: April 25, 2017Assignee: Lumentum Operations LLCInventors: John Michael Miller, Joel Milgram, Karen Denise Hendrix, Michael O'Leary, Hery Djie, Lu Tian, Paul Colbourne