Patents by Inventor Paul Crump

Paul Crump has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230327397
    Abstract: The present invention relates to a diode laser with an integrated thermal aperture. A laser diode (10) according to the invention comprises an active layer (14) formed between an n-doped semiconductor material (12) and a p-doped semiconductor material (16), wherein the active layer (14) forms an active zone (40) with a width w along a longitudinal axis for generating electromagnetic radiation; wherein in the p-doped semiconductor material (16) and/or in the n-doped semiconductor material (12) a thermal aperture (18) formed in a layer shape with a thermal conductivity coefficient kblock smaller than a thermal conductivity coefficient kbulk of the corresponding semiconductor material (16, 12) is formed for a spatially selective heat transport from the active zone (40) to a side of the corresponding semiconductor material (16, 12) opposite to the active layer (14).
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Inventors: Pietro DELLA CASA, Paul CRUMP, Mohamed ELATTAR, Matthias M. KAROW
  • Publication number: 20230299563
    Abstract: The present invention relates to a diode laser with a current block and, in particular, to a diode laser with a modified “p-n-p” or “n-p-n” structure as a current block for reducing the tunneling probability. A diode laser according to the invention comprises an active layer and a layered current block formed outside the active layer, wherein the current block is made of a material doped in opposition to its surroundings for a spatially selective current injection of the active layer between an n-substrate and a p-contact; wherein the current block is separated from adjacent layers via an intrinsic outer layer.
    Type: Application
    Filed: August 5, 2021
    Publication date: September 21, 2023
    Applicant: FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK
    Inventors: Pietro DELLA CASA, Mohamed ELATTAR, Paul CRUMP, Hans WENZEL
  • Publication number: 20220115835
    Abstract: The present invention relates to a device for generating laser radiation. An object of the present invention is to indicate a laser diode which simultaneously has a high degree of efficiency and a low degree of far field divergence. The diode laser according to the invention comprises a current barrier (5), characterized in that the current barrier (5) extends along a third axis (X), wherein the current barrier (5) has at least one opening, and a first width (W1) of the opening of the current barrier (5) along the third axis (X) is smaller than a second width (W2) of the metal p-contact (8) along the third axis (X).
    Type: Application
    Filed: January 9, 2020
    Publication date: April 14, 2022
    Inventors: Gotz EEBERT, Hans WENZEL, Steffen KNIGGE, Christian Dominik MARTIN, Andre MAASDORFF, Pietro DELLA CASA, Andrea KNIGGE, Paul CRUMP
  • Patent number: 10840674
    Abstract: A diode laser comprises an n-type first cladding layer, an n-type first waveguide layer arranged on the first cladding layer, an active layer suitable for radiation generation and arranged on the first waveguide layer, a p-type second waveguide layer arranged on the active layer, a p-type second cladding layer which is arranged on the second waveguide layer, an n-type first intermediate layer being formed as a transition region between the first waveguide layer and the active layer, and a p-type second intermediate layer being formed as a transition region between the second waveguide layer and the active layer. The diode laser according to the invention is characterized in that the asymmetry ratio of the thickness of the first intermediate layer to the sum of the thickness of the first intermediate layer and the thickness of the second intermediate layer is less than or greater than 0.5.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 17, 2020
    Assignee: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Thorben Kaul, Götz Erbert, Paul Crump
  • Publication number: 20200052465
    Abstract: A diode laser comprises an n-type first cladding layer, an n-type first waveguide layer arranged on the first cladding layer, an active layer suitable for radiation generation and arranged on the first waveguide layer, a p-type second waveguide layer arranged on the active layer, a p-type second cladding layer which is arranged on the second waveguide layer, an n-type first intermediate layer being formed as a transition region between the first waveguide layer and the active layer, and a p-type second intermediate layer being formed as a transition region between the second waveguide layer and the active layer. The diode laser according to the invention is characterized in that the asymmetry ratio of the thickness of the first intermediate layer to the sum of the thickness of the first intermediate layer and the thickness of the second intermediate layer is less than or greater than 0.5.
    Type: Application
    Filed: January 25, 2018
    Publication date: February 13, 2020
    Applicant: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Thorben KAUL, Götz ERBERT, Paul CRUMP
  • Patent number: 10498105
    Abstract: The invention relates to a laser diode (10) which has at least one active layer (12) which is arranged within a resonator (14) and is operatively connected to a outcoupling element (16), and further at least one contact layer (18) for coupling charge carriers into the active layer (12), wherein the resonator (14) comprises at least a first section (20) and a second section (22), wherein the second section (22) comprises a plurality of separate resistor elements (24) having a specific electrical resistivity greater than the specific electrical resistivity of the regions (26) between adjacent resistor elements (24), wherein a width (W3) of the resistor elements (24) along a longitudinal axis (X1) of the active layer (12) is less than 20 ?m, and a projection of the resistor elements (24) on the active layer (12) along the first axis (Z1) overlap with at least 10% of the active layer (12).
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: December 3, 2019
    Assignee: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Joerg Fricke, Jonathan Decker, Paul Crump, Goetz Erbert
  • Patent number: 10348056
    Abstract: Laser diode comprises an active layer; a waveguiding region at least partially surrounding the active layer; a rear facet; a front facet designed for outcoupling laser radiation, wherein the active layer extends at least partially along a first axis (X) between the rear facet and the front facet; and a grating operatively connected to the waveguiding region, wherein the grating comprises a plurality of bridges and trenches designed such that an average increase of a coupling parameter P for the plurality of trenches along the grating is non-zero, wherein the coupling parameter P of a trench is defined by the equation, wherein dres is a distance of the trench to the active layer, w is a width of the trench and ?n is the refractive index difference between a refractive index of the trench and a refractive index of a material surrounding the trench.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: July 9, 2019
    Assignee: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Jörg Fricke, Götz Erbert, Paul Crump, Jonathan Decker
  • Publication number: 20190016552
    Abstract: A tape dispenser package includes a carton configured to store at least one roll of tape. The carton includes a storage box, a lid, and tube mounts. The storage box is formed to define an internal-storage cavity sized to receive a tube and a roll of tape arranged around the tube. The lid is coupled with the storage box and configured to close the internal-storage cavity. The tube mounts are configured to support the tube.
    Type: Application
    Filed: May 30, 2018
    Publication date: January 17, 2019
    Inventors: Craig R. Malmloff, Paul A. Crump, Kaitlyn B. Molter
  • Publication number: 20180145481
    Abstract: Laser diode comprises an active layer; a waveguiding region at least partially surrounding the active layer; a rear facet; a front facet designed for decoupling laser radiation, wherein the active layer extends at least partially along a first axis (X) between the rear facet and the front facet; and a grid operatively connected to the waveguiding region, wherein the grid comprises a plurality of webs and trenches designed such that an average increase of a coupling parameter P for the plurality of trenches along the grid is non-zero, wherein the coupling parameter P of a trench is defined by the formula, wherein dres is a distance of the trench to the active layer, w is a width of the trench and ?n is the refractive index difference between a refractive index of the trench and a refractive index of a material surrounding the trench.
    Type: Application
    Filed: March 9, 2016
    Publication date: May 24, 2018
    Applicant: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Jörg FRICKE, Götz ERBERT, Paul CRUMP, Jonathan DECKER
  • Publication number: 20180019571
    Abstract: The invention relates to a laser diode (10) which has at least one active layer (12) which is arranged within a resonator (14) and is operatively connected to a outcoupling element (16), and further at least one contact layer (18) for coupling charge carriers into the active layer (12), wherein the resonator (14) comprises at least a first section (20) and a second section (22), wherein the second section (22) comprises a plurality of separate resistor elements (24) having a specific electrical resistivity greater than the specific electrical resistivity of the regions (26) between adjacent resistor elements (24), wherein a width (W3) of the resistor elements (24) along a longitudinal axis (X1) of the active layer (12) is less than 20 ?m, and a projection of the resistor elements (24) on the active layer (12) along the first axis (Z1) overlap with at least 10% of the active layer (12).
    Type: Application
    Filed: February 18, 2016
    Publication date: January 18, 2018
    Inventors: Joerg FRICKE, Jonathan DECKER, Paul CRUMP, Goetz ERBERT
  • Patent number: 9343873
    Abstract: It is the object of the present invention to specify a light source with high efficiency and high eye safety at the same time. For this purpose, the active layer (10), the first cladding layer (14), the first waveguide layer (12), the second waveguide layer (16), and the second cladding layer (18) should be designed such that 0.01 ?m?dwL?1.0 ?m and ?n?0.04, where dwL is the sum total of the layer thickness of the first waveguide layer (12), the layer thickness of the active layer (10), and the layer thickness of the second waveguide layer (16) and ?n is a maximum of the refractive index difference between the first cladding layer (14) and the first waveguide layer (12) and the refractive index difference between the second waveguide layer (16) and the second cladding layer (18).
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: May 17, 2016
    Assignee: Forschungsverbund Berlin E.V.
    Inventors: Paul Crump, Goetz Erbert, Hans Wenzel
  • Patent number: 8846425
    Abstract: A diode laser having aluminum-containing layers and a Bragg grating for stabilizing the emission wavelength achieves an improved output/efficiency. The growth process is divided into two steps for introducing the Bragg grating, wherein a continuous aluminum-free layer and an aluminum-free mask layer are continuously deposited after the first growth process such that the aluminum-containing layer is completely covered by the continuous aluminum-free layer. Structuring is performed outside the reactor without unwanted oxidation of the aluminum-containing semiconductor layer. Subsequently, the pre-structured semiconductor surface is further etched inside the reactor and the structuring is impressed into the aluminum-containing layer.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Forschungsvebund Berlin E.V.
    Inventors: Olaf Brox, Frank Bugge, Paul Crump, Goetz Erbert, Andre Maassdorf, Christoph M. Schultz, Hans Wenzel, Markus Weyers
  • Patent number: 8798109
    Abstract: A laser diode has a first n-conducting cladding layer, a first n-conducting waveguide layer arranged therein, an active layer is suitable for generating radiation arranged on the first waveguide layer, a second p-conducting waveguide layer, arranged on the active layer, and a second p-conducting cladding layer, arranged on the second waveguide layer the sum of the layer thickness of the first waveguide layer, the layer thickness of the active layer and the layer thickness of the second waveguide layer is greater than 1 ?m and the layer thickness of the second waveguide layer is less than 150 nm. The maximum mode intensity of the fundamental mode is in a region outside the active layer, and the difference between the refractive index of the first waveguide layer and the refractive index of the first cladding layer is between 0.04 and 0.01.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Forschungsverbund Berlin E.V.
    Inventors: Erbert Götz, Hans Wenzel, Paul Crump
  • Publication number: 20130287057
    Abstract: A laser diode has a first n-conducting cladding layer, a first n-conducting waveguide layer arranged therein, an active layer is suitable for generating radiation arranged on the first waveguide layer, a second p-conducting waveguide layer, arranged on the active layer, and a second p-conducting cladding layer, arranged on the second waveguide layer the sum of the layer thickness of the first waveguide layer, the layer thickness of the active layer and the layer thickness of the second waveguide layer is greater than 1 ?m and the layer thickness of the second waveguide layer is less than 150 nm. The maximum mode intensity of the fundamental mode is in a region outside the active layer, and the difference between the refractive index of the first waveguide layer and the refractive index of the first cladding layer is between 0.04 and 0.01.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 31, 2013
    Inventors: Erbert Götz, Hans Wenzel, Paul Crump
  • Patent number: 8537869
    Abstract: A broad area laser, with high efficiency and small far-field divergence, has an active layer, a first contact and a second contact, each having a width larger than 10 ?m. An anti-wave guiding layer, which is positioned laterally with respect to the active region, is enclosed between the first and second contacts, wherein a refractive index of the anti-wave guiding layer is larger than a minimum refractive index of cladding layers. A minimum distance between the anti-wave guiding layer and a projection of one of the contacts on the plane of the anti-wave guiding layer is between 0 and 100 ?m.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: September 17, 2013
    Assignee: Forschungsverbund Berlin e.V.
    Inventors: Paul Crump, Goetz Erbert, Hans Wenzel, Joerg Fricke
  • Publication number: 20130208748
    Abstract: It is the object of the present invention to specify a light source with high efficiency and high eye safety at the same time. For this purpose, the active layer (10), the first cladding layer (14), the first waveguide layer (12), the second waveguide layer (16), and the second cladding layer (18) should be designed such that 0.01 ?m?dWL?1.0 ?m and ?n?0.04, where dWL is the sum total of the layer thickness of the first waveguide layer (12), the layer thickness of the active layer (10), and the layer thickness of the second waveguide layer (16) and ?n is a maximum of the refractive index difference between the first cladding layer (14) and the first waveguide layer (12) and the refractive index difference between the second waveguide layer (16) and the second cladding layer (18).
    Type: Application
    Filed: September 12, 2011
    Publication date: August 15, 2013
    Applicant: Forschungsverbund Berlin E.V.
    Inventors: Paul Crump, Goetz Erbert, Hans Wenzel
  • Publication number: 20120287957
    Abstract: The present invention relates to a broad area laser with high efficiency and small far-field divergence, as well as high output power. According to the invention, the active layer (10), the first contact (22) and the second contact (24) each have a width (W) larger than 10 ?m, and there is also an anti-wave guiding layer (20) which is positioned laterally in relation to the active region enclosed between the contacts (22, 24), wherein the refractive index of the anti-wave guiding layer (20) is larger than the minimum refractive index of the cladding layers (14, 18), and wherein the minimum distance (dx) between the anti-wave guiding layer (20) and a projection of one of the contacts (24) on the plane of the anti-wave guiding layer (20) lies between 0 and 100 ?m.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 15, 2012
    Applicant: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Paul CRUMP, Goetz Erbert, Hans Wenzel, Joerg Fricke
  • Publication number: 20070235839
    Abstract: A method of minimizing stress within large area semiconductor devices which utilize a GaAs substrate and one or more thick layers of AlxGa1-xAs is provided, as well as the resultant device. In general, each thick AlxGa1-xAs layer within the semiconductor structure is replaced, during the structure's fabrication, with an AlxGa1-xAszP1-z layer of approximately the same thickness and with the same concentrations of Al and Ga. The AlxGa1-xAszP1-z layer is lattice matched to the GaAs substrate by replacing a small percentage of the As in the layer with P.
    Type: Application
    Filed: October 7, 2005
    Publication date: October 11, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeVito, Paul Crump, Jun Wang, Weimin Dong, Michael Grimshaw, Christopher Ebert
  • Publication number: 20070053396
    Abstract: A means of controlling the stress in a laser diode structure through the use of AlGaAsP is provided. Depending upon the amount of phosphorous in the material, it can be used to either match the lattice constant of GaAs, thus forming a strainless structure, or mismatch the lattice constant of GaAs, thereby adding tensile stress to the structure. Tensile stress can be used to mitigate the compressive stress due to material mismatches within the structure (e.g., a highly strained compressive quantum well), or due to the heat sink bonding procedure.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 8, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeVito, Paul Crump, Jun Wang, Weimin Dong, Michael Grimshaw
  • Publication number: 20060023763
    Abstract: A semiconductor laser and a method of forming the same are provided. The semiconductor laser includes cladding layers comprised of hybrid materials systems which have different conduction to valance band gap offset ratios with respect to GaAs. As a result of these hybrid structures, lower junction voltages on both the n-side and p-side of the laser structure are achieved, thereby increasing the electrical to optical conversion efficiency of the laser.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 2, 2006
    Applicant: nLight Photonics Corporation
    Inventors: Jason Farmer, Mark DeVito, Zhe Huang, Paul Crump, Michael Grimshaw, Prabhuram Thiagarajan, Weimin Dong, Jun Wang