Patents by Inventor Paul D. Pulaski

Paul D. Pulaski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230389791
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Application
    Filed: August 21, 2023
    Publication date: December 7, 2023
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Paul D. Pulaski, Stephen Farrer, Carmen Canova Vidal, Daniel Hamrick
  • Patent number: 11730359
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: August 22, 2023
    Assignee: AMO Development, LLC
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Paul D. Pulaski, Stephen Farrer, Carmen Canovas Vidal, Daniel Hamrick
  • Patent number: 11026575
    Abstract: A system includes: a swept laser light source generating laser light having a frequency swept across a frequency bandwidth as a function of time; a sample path directing a first portion of the laser light to an eye as a probe beam and receiving a returned portion of the probe beam from the eye; a reference path passing therethrough a second portion of the laser light, the reference path having a defined optical path length; and a detector receiving the returned portion of the probe beam from the eye and the second portion of the laser light from the reference path, and in response thereto outputting an optical coherence tomography (OCT) output signal having OCT peaks whose relative timing represents the depths of surfaces of structures of the eye, wherein the sample path includes a fiducial generator which produces a fiducial peak in the OCT output signal.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: June 8, 2021
    Assignee: AMO Development, LLC
    Inventors: Thomas D. Raymond, Richard J. Copland, Paul D. Pulaski
  • Publication number: 20200113433
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Paul D. Pulaski, Stephen Farrer, Carmen Canovas Vidal, Daniel Hamrick
  • Patent number: 10555669
    Abstract: An optical coherence tomography (OCT) interferometer includes at least a first optical fiber of a first type having a first length, in series with a second optical fiber of a second type which is different than the first type and having a second length, in at least one of the sample path and/or the reference path of the OCT interferometer. The dispersion characteristics of the first optical fiber and the second optical fiber are significantly different than each other. As a result, the total group delay dispersion of a first portion of the laser light passing through the sample path and the total group delay dispersion of the second portion of the laser light passing through the reference path may offset each other at the detector.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: February 11, 2020
    Assignee: AMO Wavefront Sciences, LLC
    Inventors: Paul D. Pulaski, Thomas D. Raymond
  • Patent number: 10506923
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: December 17, 2019
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Paul D. Pulaski, Stephen Farrer, Carmen Canovas Vidal, Daniel Hamrick
  • Patent number: 10456026
    Abstract: A system for predicting optical power for an intraocular lens based upon measured biometric parameters in a patient's eye includes: a biometric reader capable of measuring one or more biometric parameters of the patient's eye and obtaining at least one value for at least one of the one or more biometric parameters, and further measuring a representation of a corneal topography of the patient's eye; a processor; and a computer readable medium coupled to the processor and having stored thereon a program that upon execution causes the processor to: receive the at least one value; obtain a corneal spherical aberration (SA) based upon the representation of the corneal topography; and calculate an optimized optical power to obtain a desired postoperative condition by applying the received at least one value and the obtained corneal spherical aberration to a modified regression.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: October 29, 2019
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Daniel R. Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Stephen W. Farrer, Paul D. Pulaski, Daniel R. Hamrick, Carmen Canovas Vidal, Pablo Artal
  • Publication number: 20190223714
    Abstract: A system includes: a swept laser light source generating laser light having a frequency swept across a frequency bandwidth as a function of time; a sample path directing a first portion of the laser light to an eye as a probe beam and receiving a returned portion of the probe beam from the eye; a reference path passing therethrough a second portion of the laser light, the reference path having a defined optical path length; and a detector receiving the returned portion of the probe beam from the eye and the second portion of the laser light from the reference path, and in response thereto outputting an optical coherence tomography (OCT) output signal having OCT peaks whose relative timing represents the depths of surfaces of structures of the eye, wherein the sample path includes a fiducial generator which produces a fiducial peak in the OCT output signal.
    Type: Application
    Filed: January 21, 2019
    Publication date: July 25, 2019
    Inventors: Thomas D. Raymond, Richard J. Copland, Paul D. Pulaski
  • Publication number: 20180125354
    Abstract: An optical coherence tomography (OCT) interferometer includes at least a first optical fiber of a first type having a first length, in series with a second optical fiber of a second type which is different than the first type and having a second length, in at least one of the sample path and/or the reference path of the OCT interferometer. The dispersion characteristics of the first optical fiber and the second optical fiber are significantly different than each other. As a result, the total group delay dispersion of a first portion of the laser light passing through the sample path and the total group delay dispersion of the second portion of the laser light passing through the reference path may offset each other at the detector.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 10, 2018
    Inventors: Paul D. Pulaski, Thomas D. Raymond
  • Publication number: 20170027437
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Application
    Filed: December 15, 2015
    Publication date: February 2, 2017
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, WEI XIONG, PAUL D. PULASKI, STEPHEN FARRER, CARMEN CANOVAS VIDAL, DANIEL HAMRICK
  • Patent number: 9468369
    Abstract: A system includes a model eye and an optical measurement instrument, which includes: a corneal topography subsystem; a wavefront sensor subsystem; and an eye structure imaging subsystem. The subsystems may have a common fixation axis, and be operatively coupled to each other via a controller. The optical measurement instrument may perform measurements of the model eye to verify correct operation of the optical measurement instrument for measuring one or more characteristics of a subject's eye. The model eye may include an optically transmissive structure having a front curved surface and an opposite rear planar surface, and a material structure provided at the rear planar surface of the optically transmissive structure and having a characteristic to cause a speckle pattern of a portion of a coherent light beam that is directed back out the front curved surface of the optically transmissive structure to have a bright-to-dark ratio of less than 2:1.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: October 18, 2016
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Wei Xiong, Paul D. Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
  • Publication number: 20160227996
    Abstract: A system for predicting optical power for an intraocular lens based upon measured biometric parameters in a patient's eye includes: a biometric reader capable of measuring at least one biometric parameter and a representation of a corneal topography of the patient's eye; a processor coupled to a computer readable medium having stored thereon a program that upon execution causes the processor to receive the at least one biometric parameter and obtain corneal spherical aberration based upon the representation of the corneal topography, and the processor calculates an optimized optical power to obtain a desired postoperative condition by applying the received value and obtained corneal spherical aberration to a modified regression, wherein the modified regression is of the form: optical power=Regression+constant0*(corneal spherical aberration) or optical power=constant1*(biometric parameter)+constant0*(corneal spherical aberration).
    Type: Application
    Filed: April 13, 2016
    Publication date: August 11, 2016
    Inventors: Daniel R. Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Stephen W. Farrer, Paul D. Pulaski, Daniel R. Hamrick, Carmen Canovas Vidal, Pablo Artal
  • Publication number: 20150131053
    Abstract: A system includes a model eye and an optical measurement instrument, which includes: a corneal topography subsystem; a wavefront sensor subsystem; and an eye structure imaging subsystem. The subsystems may have a common fixation axis, and be operatively coupled to each other via a controller. The optical measurement instrument may perform measurements of the model eye to verify correct operation of the optical measurement instrument for measuring one or more characteristics of a subject's eye. The model eye may include an optically transmissive structure having a front curved surface and an opposite rear planar surface, and a material structure provided at the rear planar surface of the optically transmissive structure and having a characteristic to cause a speckle pattern of a portion of a coherent light beam that is directed back out the front curved surface of the optically transmissive structure to have a bright-to-dark ratio of less than 2:1.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 14, 2015
    Inventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Wei Xiong, Paul D. Pulaski, Stephen W. Farrer, Carmen Canovas Vidal
  • Patent number: 5650850
    Abstract: A laser gyroscope comprising two ninety degree turning prisms optically connected. A non-reciprocal gain layer structure is grown on the hypotenuse face of one prism.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: July 22, 1997
    Assignee: University of New Mexico
    Inventors: Jean-Claude M. Diels, Paul D. Pulaski